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Preface

In the past decade, we have witnessed the emergence of large-scale media-sharing social
network communities such as Napster, Facebook, and YouTube, in which millions of
users form a dynamically changing infrastructure to share multimedia content. This
proliferation of multimedia data has created a technological revolution in the entertain-
ment and media industries, bringing new experiences to users and introducing the new
concept of web-based social networking communities. The massive production and use
of multimedia also pose new challenges to the scalable and reliable sharing of multime-
dia over large and heterogeneous networks; demand effective management of enormous
amounts of unstructured media objects that users create, share, link, and reuse; and raise
critical issues of protecting the intellectual property of multimedia.

In large-scale media-sharing social networks, millions of users actively interact with
one another; such user dynamics not only influence each individual user but also affect
the system performance. An example is peer-to-peer (P2P) file sharing systems, in which
users cooperate with one another to provide an inexpensive, scalable, and robust platform
for distributed data sharing. Because of the voluntary and unregulated participation
nature of these systems, user cooperation cannot be guaranteed in P2P networks, and
recent studies showed that many users are free riders, sharing no files at all. To provide
a predictable and satisfactory level of service, it is important to analyze the impact of
human factors on media-sharing social networks, and to provide important guidelines
for better design of multimedia systems. The area of human and social dynamics has
recently been identified by the US National Science Foundation (NSF) as one of its five
priority areas, which also demonstrates the importance of this emerging interdisciplinary
research area.

This book, Behavior Dynamics in Media-Sharing Social Networks, aims to illustrate
why human factors are important, to show that signal processing can be used effectively
to model user dynamics, and to demonstrate how such understanding of human behavior
can help improve system performance. We cover recent advances in media-sharing social
networks, and study two different types of media-sharing social networks, multimedia
fingerprinting and P2P live streaming social networks. We review the fundamental
methodologies for modeling and analyzing human behavior, and investigate the impact
of human dynamics on multimedia system design. Our goal is to encourage researchers
from different areas to further explore the emerging research field of behavior modeling
and forensics, to improve our understanding of user dynamics in media-sharing social
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networks, and ultimately to design systems with more efficient, secure, and personalized
services.

We partition the book into five parts. In Part I, we illustrate the fundamental issues of
media-sharing social networks, including quantitative social network analysis and media
semantics, in Chapter 1; provide overviews on multimedia fingerprinting and P2P video
streaming in Chapters 2 and 3, respectively; and offer an introduction to game theory
that will be used throughout the later chapters in Chapter 4.

In Part II, the focus is on user dynamics in media-sharing social networks. The notion
of equal-risk fairness in multimedia fingerprinting colluder social networks is addressed
in Chapter 5, followed by the study of how to leverage side information to reach a better
equilibrium via game-theoretical analysis in Chapter 6. The concept of risk—distortion
tradeoff is considered in Chapter 7 to understand how optimal strategies may vary and
depend on decisions of both attackers and detectors.

Because of the constant user interactions in social networks, cooperation becomes a
major issue. Therefore, Part III is dedicated to the consideration of cooperation stim-
ulation with the notion of fairness. Game-theoretic models with different bargaining
strategies and fairness criteria are developed in Chapter 8 to study optimal strategies
of feasible attacks in multimedia fingerprinting colluder social networks. In Chapter 9,
an optimal cooperation strategy of cooperative stimulation in P2P video streaming is
considered, followed by the study of the optimal price setting for mobile P2P video
streaming in Chapter 10.

In Part I'V, we turn our attention to the identification of misbehaving users. In multi-
media fingerprinting social networks, even when colluders agree on a strategy, they may
not execute accordingly. Instead, for example, they may cheat to take more advantage
in further minimizing their own risk. In Chapter 11, such a traitor-within-traitor phe-
nomenon is investigated. Similarly, the presence of the malicious attack will discourage
nonmalicious users to join the social network. In Chapter 12, the design of methodolo-
gies to identify hostile users and the cheat-proof cooperation strategies against malicious
attacks are considered.

Finally, in Part V, the impact of social network structure on the performance of
social networking is discussed. In Chapter 13, the impact of centralized social networks
with trusted ringleaders and distributed peer-structured social networks on multimedia
fingerprinting collusion is considered, and in Chapter 14, forming a social structure with
a group lead agent is investigated for P2P streaming social networks.

This book is intended to be a reference book or textbook for graduate-level courses
such as social computing and networking, image and video communications and net-
working, and network/information security. We hope that the comprehensive coverage
and a holistic treatment of media-sharing social networking will make this book a useful
resource for readers who want to understand this emerging technology, as well as for
those who conduct research and development in this field.

We would like to thank Mr. Yan Chen for his research contributions that are included
in this book.
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Introduction to media-sharing
social networks

With recent advances in communications, networking, and computer technologies, we
have witnessed the emergence of large-scale user-centered web 2.0 applications that
facilitate interactive information sharing and user collaboration via Internet — for exam-
ple, blogs; wikis; media-sharing websites such as Napster, Flickr, and YouTube; social
networking services such as Facebook, LinkedIn, and Twitter; and many others. Dif-
ferent from traditional web applications that allow only passive information viewing,
these web 2.0 sites offer a platform for users to actively participate in and contribute
to the content/service provided. The resulting trend toward social learning and net-
working creates a technological revolution for industries, and brings new experience to
users.

The emergence of these websites has significant social impact and has profoundly
changed our daily life. Increasingly, people use the Internet as a social medium to
interact with one another and expand their social circles, to share information and
experiences, and to organize communities and activities. For example, YouTube is a
popular video-sharing website on which users upload, share, and view a wide variety of
user-generated video content. It targets ordinary people who have Internet access but
who may not have a technical background on computers and networking, and enables
them to upload short video clips that are viewable to the worldwide audience within
a few minutes. Its simplicity of use and the large variety of content offered on the
website attract more than one billion views per day, according to a blog by Chad Hurley
(cofounder of YouTube) on October 9, 2009, and make video sharing an important part
of the new Internet culture.

According to the Alexa Global traffic ranking, among the 20 hottest websites, many
of them are social networking and media-sharing websites — for example, Facebook,
MySpace, Twitter, and YouTube. The increasing popularity of these interactive and
user-centered websites also means new business opportunities. In July 2009, eMarketer
projected that even with the current world economy hurdle, the amount of money
US marketers spend on online social network advertising will reach $1.3 billion in
2010, a 13.2 percent increase compared with 2009 [1]. In a later report in December
2009, eMarketer predicted that in 2010, worldwide online advertising spending on
Facebook would reach $605 million, corresponding to a 39 percent increase compared
with 2009 [2]. In particular, it was predicted that the non-U.S. advertising spending on
Facebook would increase by 65 percent in 2010 [2].
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With recent advances in wireless communication technologies, mobile social networks
have become increasingly popular. Internet-based social networks such as MySpace and
Facebook have turned mobile; they enable mobile phone users to access their websites,
upload mobile photos and videos to their profiles, and so forth. In addition, new mobile
social networks that are designed specifically for mobile applications — for example,
Foursquare, Loopt, and Gowalla, which enable users to explore and discover their local
vicinity — have also emerged. A report released by Informa on March 25, 2010 forecast
that US mobile social networking ad revenue would rise by 50 percent to $421 million
in 2010, and would continue its robust growth into 2013 with a breakthrough of the
$1 billion revenue mark [3]. Other potential applications for integrated sensor and
social networks include traffic monitoring, human movement and behavior analysis,
collaborative rehabilitation for seniors, and many others [4,5].

However, this emerging trend of social learning and networking also poses new
challenges and raises critical issues that need to be addressed for further prolif-
eration and development of such social networks. Listed below are just a few of
them.

¢ With the resulting avalanche of information that users create, share, and distribute over
networks, it is crucial to effectively manage these data and to support accurate and fast
searching of information. This is particularly challenging for media objects (audio,
image, and video), as the same audio or video clip (or its portions) may be processed
in many different ways and appear in a variety of different contexts and formats [6].
As an example, a recent study of traffic flow in FastTrack, one of the largest peer-
to-peer (P2P) file-sharing networks, showed that there were 26,715 different versions
and 637,381 different copies of the song “Naughty Girl” on FastTrack. Among them,
62 percent of the versions and 73 percent of the copies were “polluted” — that is, either
they were nondecodable or their time durations were significantly longer or shorter
than the official CD release [7].

* Social networks facilitate easy information sharing among users, and the same easy
access of such networks enables anyone to view the shared content [8]. Information
sharing at such an unprecedented scale in social networks may post serious security and
privacy concerns. For example, in medical and scientific research, collecting human
behavior and health information requires very strict scrutiny, whereas social networks
make it possible to collect such information much more easily without contacting
the subjects [9]. Using and republishing such public information in research without
informed consent may be considered as an invasion of privacy [9].

¢ Social networks may be misused and manipulated by people for defamation, profit, and
many other purposes [ 10]. For example, researchers from Harvard University recently
discovered that scammers created sophisticated programs to mimic legitimate YouTube
traffic and to provide automated feedback for videos and other content they wished to
promote [11]. A recent study by researchers at the University of California at Berkeley
found that some eBay users artificially boost their reputations by buying and selling
feedbacks, so they can seek higher prices on items that they sell [12].
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From these examples, it can be seen that users play an active and important role in
social networks, and the way in which they behave and use the huge amount of infor-
mation available on social networks has a significant impact on system performance.
These new challenges call for novel solutions to model user interactions and study
the impact of human behavior on social networks, to analyze how users learn from
each other as well as from past experiences, and to understand people’s cognitive and
social abilities. These solutions will facilitate the design of future societies and networks
with enhanced performance, security, privacy, availability, and manageability. This is
an interdisciplinary research area, covering signal processing, social signal processing,
information science, sociology, psychology, and economics, in which signal and infor-
mation processing plays a critical role. The advanced signal and information processing
technologies will enable us to better characterize, understand, and ultimately influence
human behaviors as desired.

This book focuses on an important class of social networks, media-sharing networks,
in which users form a dynamically changing infrastructure to upload, exchange, dis-
tribute, and share images, videos, audio, games, and other media. Famous examples
include YouTube, Napster, and Flickr. Also, many P2P file sharing systems — for exam-
ple, BitTorrent and KaZaa — have been used to share digital media. Catching the current
trend of delivering TV programs over the Internet, we have also seen many successful
deployments of P2P live streaming, sometimes called P2PTV, in which video streams
(typically TV programs) are delivered in real time on a P2P network. Examples of such
P2PTYV applications include PPLive, PPStream, SopCast, QQLive from China, Abroad-
casting from the United States, and LiveStation from the United Kingdom. They attract
millions of viewers, and the aggregated bandwidth consumption may reach hundreds of
gigabits per second [13]. In this book, we study user behavior in media-sharing social
networks and analyze the impact of human factors on multimedia signal design. We
use two different types of media-sharing social networks, multimedia fingerprinting and
P2P live streaming, as examples.

Before we move on to the modeling and analysis of user behavior in media-sharing
social networks, we first quickly review recent advances in other research areas in media-
sharing social networks, including social network analysis and media semantics in social
networks.

Quantitative analysis of social networks

Social networks are defined as “social structures that can be represented as networks —
as sets of nodes (for social system members) and sets of ties depicting their intercon-
nections” [14]. The two elements, actors (or nodes) and relations, jointly form a social
network. Actors can be individual persons, small groups, formal organizations, or even
countries, who are connected to each other via certain relationships, such as friendship,
trade, or colleagues. In addition to describing how a set of actors are connected to each
other, social network analysis describes the underlying patterns of social structure and
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investigates their impact on individual behavior, as well as analyzing them on the system
level [15].

Social network representation, notations, and relationship measures

Representation

There are two different methods to represent and analyze a social network, sociogram
and sociomatrix [15]. In a sociogram, graphs and graph theory are used to visually
represent and analyze social networks. Here, actors are denoted as points (also called
nodes or vertices) and a relation (tie) is represented using a line (also called an arc or
edge). A sociomatrix uses tabular matrices to depict social networks and to facilitate
complex mathematical analysis. Here, an N x N matrix x is used to represent a social
network with N actors, and the element x;; at row i and column j represents the
relationship between the ith and jth actors, in which actor i is the initiator and j is
the recipient. These two representation methods are equivalent and contain the same
information.

Different networks represent different relations, and there are many different types of
social networks. If the relation is nondirected, or mutual — for example, classmates and
colleagues — all lines in the graph representation have no arrowheads, and in the matrix
representation, we have a symmetric matrix with x;; = x;;. Other types of relations
are directed, and we have directed graphs with arrowheads in the lines. For example,
A trusts B, whereas B may not trust 4; therefore, there is one link from 4 to B but not
vice versa.

In addition to directionality, the lines (arcs) in a social network may be binary or
measured with different value scales. For example, in simple relations such as classmates
or colleagues, there is either a line (presence) or no line (absence) between two nodes,
which corresponds to binary networks. For other types of relations, each line not only
indicates the existence of the relation, but also values the intensity of the relation. For
example, one actor can rank other actors in the network as “friends,”
or “strangers,” indicating different levels of relations [15].

To summarize, there are four basic types of social networks: binary nondirected,
binary directed, valued nondirected, and valued directed.

acquaintances,”’

Notations
Graph theory is often used in social network analysis; thus, we first introduce some basic
concepts in graph theory.

Given a social network represented using a graph, a subgraph is a subset of nodes
and lines, in which all lines in the subgraph must be between pairs in the subgraph. A
walk is an alternating sequence of incident nodes and lines, which connects the starting
and the ending nodes; the length of a walk is the number of lines contained in the walk.
A path is a walk with distinct nodes and lines — that is, every node and every line are
visited only once in the walk.

A graph is connected if there is a path between every pair of nodes in the graph, and is
called disconnected otherwise. A node that is not connected to any other nodes is called
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an isolate. A graph component is a maximal subgraph that forms a connected graph. In
a connected graph, a node is a cutpoint if its removal would disconnect the graph, and a
line is a bridge if its removal would disconnect the graph into two or more components.
The notion of cutpoint and bridge is important in network analysis, as networks with
cutpoints and bridges are more vulnerable to disruptions than those with many redundant
paths to sustain information and resource flows [15].

Relationship measures
There are many important relationship measurements in graph theory — for example,
nodal degree, geodesic distances, and density — which we will briefly introduce here.

Nodal degree: For anode i in a binary nondirected graph, its nodal degree is the total
number of lines that are incident with it. With directed graphs, nodal indegree and nodal
outdegree should be distinguished. Nodal indegree is the number of lines received by
node 7, and nodal outdegree is the number of lines sent by node i. For valued graphs, we
can use the mean values of the lines connected to node i to represent its nodal degree.
Nodal degree reflects the node’s level of involvement in network activities [15], and the
mean nodal degree averaged over all nodes shows the aggregate level of activity in the
network.

Geodesic distance: The geodesic distance between a pair of nodes is the length of
the shortest path that connects them. If there is no path between two nodes, then their
geodesic distance is infinite or undefined. For directed graphs, the geodesic distance from
node i to node j may be different from the geodesic distance from j to i. For example,
node i may be able to send a message to j, but not vice versa. Geodesic distance measures
the closeness of two nodes and plays an important role in distance-based analysis, such
as in clustering analysis [15].

Density of a graph: Density measures the extent to which nodes in a graph are
connected among themselves. For a binary nondirected graph with N nodes, its density
D is the number of lines in the graph (L) divided by the maximum possible lines
((2’ ) when there is a direct link between any pair of nodes in the graph) — that is,
D=L/ (];7 ) For directed graphs, the denominator is changed to 2 (2] ), because for each
pair of nodes in a directed graph, there are two possible lines with different directions.

For valued graphs, the numerator is replaced by the summation of all lines’ values.

Centrality and prestige

An important usage of graph theory is to identify the “most important” actors and/or
groups in social networks [15,16]; the concepts of centrality and prestige quantify an
actor (or group)’s prominence (involvement in the network activities) in a network. An
individual actor’s prominence reflects its visibility to other actors in the networks, and
at the group level, it evaluates the divergence of all group members’ prominence [15].
The difference between centrality and prestige is whether the direction of lines counts.
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In centrality, a prominent actor has many direct links with other actors regardless of the
direction, whereas in prestige, a prominent actor receives many incoming lines but does
not initiate many outgoing ties.

The most widely used centrality measures are degree, closeness, and betweenness.
In this section, we use binary nondirected graphs to illustrate these concepts, and the
definitions for directed and valued graphs are available in references [15,16].

Degree centrality: At the individual level, node i’s degree centrality is defined as its
nodal degree normalized by the total number of actors in the graph, and is a real number
between 0 and 1. Actors with high degree centralities have more connections with others
and higher visibility in the networks.

At the group level, group degree centrality measures the extend to which actors differ
in terms of their individual degree centralities, and resembles the standard deviation of
the individual degree centralities among group members [15]. When all group members
have the same degree centrality, the group degree centrality is zero. In the other extreme
case of a star graph, in which one node is connected to all other nodes but there is
no connection between any other two nodes, the group degree centrality achieves the
maximum possible value.

Closeness centrality: For node i, its closeness reflects how quickly it can interact
with other actors, such as by communicating directly or via few intermediaries [15].
For node i, its actor closeness centrality index is the inverse of the mean geodesic
distances between i and all other nodes in the graph, and it takes the smallest value
when node i is directly linked to all others in the network. At the group level, the
group closeness centralization index measures the extent to which actors differ in their
individual closeness centralities.

Betweenness centrality: The communication between two nonadjacent nodes depend
on other actors, especially those who are on the paths between these two. These “other
actors” may potentially have some control over the interaction between these two nonad-
jacent actors, and the betweenness centrality concept quantifies how other actors control
or mediate the relations between connected nodes [15]. Actor betweenness centrality
measures the extent to which an actor lies on the shortest path between pairs of other
actors, and the group-level betweenness measures the extend to which this value varies
across group members. Detailed definitions and explanations of betweenness centrality
can be found in references [15,16].

Prestige is used when it is much more important to specify the initiators and the
recipients of relations than just giving mere participation [15]. It measures the extent to
which an actor “receives” relations sent by others, and emphasizes inequality in control
over information and/or resources. For node i in a directed graph, its actor degree prestige
is its normalized indegree, and it takes a larger value when node i is more prestigious.
A detailed discussion can be found in reference [16].
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Cohesive subgroups

Another important task in social network analysis is to identify cohesive subgroups of
actors who are connected via many direct, reciprocated choice relations, and who share
information, achieve homogeneity of thoughts and behavior, and act collectively [15,16].

In graph theory, cligue is an important concept for analyzing group structures and for
understanding how cohesion benefits group members as well as restricts the range of
social contacts [17,18]. A clique is “a maximal complete subgraph of three or more nodes,
all of which are directly connected to one another, with no other node in the network
having direct ties to every member of the clique” [15]. Thus, every pair of nodes in a
clique is connected by a direct link, and their geodesic distance is 1. Furthermore, it
rigorously separates members inside a cohesive subgroup from outsiders. Because of
this very strict requirement, large cliques are seldom found in real networks [16].

To address this rigid definition, the n-clique concept is introduced, in which the
geodesic distance between any pair of nodes cannot exceed 7 and no node can be more
than » links away from any others [15]. A larger value of » makes the clique more
inclusive (with more nodes) but less cohesive (among its members). Another possible
solution is the k-core concept, based on nodal degrees; in a k-core subgroup, each node
is adjacent to at least k other nodes in the subgroup [16]. There have also been definitions
of cohesive subgroups derived from the relative closeness of ties within the subgroup as
well as the relative distance of ties from subgroup members to outsiders [16]. Readers
who are interested are referred to reference [16] for more discussions and detailed
explanations.

Structural equivalence

Many works on social network analysis focus on the network role and position analysis —
that is, study of actors’ structural similarities and patterns of relations. Two actors are
perfectly structurally equivalent if they have exactly identical patterns of links sent to
and received from all other actors [15]. That is, node i and j are equivalent if and only
if the following conditions hold: (1) if node i receives a link from node &, then there is
also a link from node k to node j; and (2) if node i sends a link to node £, node j also
sends a link to node k. Structurally equivalence often causes fierce competition, as one
actor can be easily replaced by another without affecting the network structure.

In real networks, the above definition is often too rigorous to be useful. A more
practical scenario is that some nodes may be approximately structurally equivalent —
that is, their relations to other nodes are similar but not identical. Many works have
been done to measure the relation similarity between two nodes — for example, the
Euclidean distance-based measurement, the correlation-based definition, automorphic
and isomorphic equivalence, and regular equivalence [16].

Given these relation similarity measurements, the next step is to partition actors
into subsets (also called positions), in which actors in one subset are closer to being
equivalent than those in different subsets. There are many different ways to partition
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actors, including convergence of iterated correlations (CONCOR), hierarchical cluster-
ing, and multidimensional scaling. The last step is to describe the ties between and within
positions — that is, how positions are related to each other. The commonly used methods —
density tables, image matrices, reduced graphs, blockmodels, and relational algebras —
have also been used for algebraic analysis of role systems. Details can be found in
reference [16].

Other methods for network analysis

In the preceding sections, we focused on the study of “one-mode” networks linking
actors to actors. Affiliation networks, also called membership networks, represent the
involvement of a set of actors in a set of social events. An affiliation network is a “two-
mode” network containing two types of nodes, actors, and events, and a set of relations
between each nodal type. Research on affiliation network analysis aims to uncover the
relational structures among actors through their joint involvement in events, and to reveal
the relational structure of events attracting common participants [15].

A binary affiliation network can be represented using an affiliation matrix x, where
x;; = lifactori participates in event j and x;; = 0 otherwise. It can also be represented
using a bipartite graph, where nodes are partitioned into two subsets, one including all
the actors and the other with all the events, and one line in the graph links one actor to
one event [16]. Galois lattices and correspondence analysis are often used to analyze
affiliation networks; interested readers are referred to references [14,15] for detailed
discussions.

In addition to the preceding analysis of deterministic (also called descriptive) social
networks, probability and statistics have also been introduced in social network analysis
[16]. Research topics in this area include statistical analysis of reciprocity and mutuality,
structure inference, modeling and prediction for processes on network graphs, analysis of
network flow data, and many others [16,19,20]. Readers who are interested are referred
to references [16,19,20] for recent advances in this area.

Traditional social network analysis treats the network as a static graph, which is
generated either from data aggregated over a long period of time or from data collected at
a specific time instance. Such analysis ignores the temporal evolution of social networks
and communities. To address this issue that has been overlooked, recently, there has
been a growing trend to analyze how communities evolve over time in dynamic networks
[21-24]. Lin et al. [25] proposed a unified framework to analyze communities and their
evolution, in which the community structure provides evidence about how they evolve,
and at the same time, the evolutionary history suggests which community structure is
more appropriate.

Understanding media semantics in media-sharing networks

With the increasing popularity of media-sharing social networks, an important issue is to
effectively manage these “billion-scale” social media and support accurate and efficient
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search of media objects. It requires accurate interpretation and understanding of media
semantics. A promising approach is to annotate digital media with a set of keywords,
such as “bridge” and “airplane” (sometimes called labels, concepts, or tags, in different
contexts), to facilitate searching and browsing [26]. In this section, we first quickly
review recent advances in social media annotation. We then focus on recent study on
the emergent and evolutionary aspects of semantics and on leveraging social processes
to understand media semantics.

Social media annotation

Depending on the flexibility of the keywords used to annotate digital media, media
annotation methods can be classified into two categories, labeling and tagging [26].
In labeling, given a fixed concept set often called ontology, annotators decides
whether a media object is relevant or irrelevant to a concept, whereas in tagging,
which is ontology-free, users can freely choose a few keywords to annotate a media
object.

The labeling process can be either manual or automatic. Manual labeling by users
is tedious, labor-intensive, and time-consuming; Hua and Qi [27] proposed that the
future trend for large-scale annotation is to leverage Internet users to contribute
efforts. Ontology-driven automatic media annotation (also called concept detection or
high-level feature extraction) and the closely related research area of content-based
image/video retrieval have attracted much research activity in the past decades. These
methods extract low-level content-based features that can be easily computed from
digital media (for example, color histograms) and map them to high-level concepts
that are meaningful and intuitive to humans. The mapping of low-level numerical
features to high-level concepts (labels) is often done using learning algorithms — for
example, neural networks, support vector machines, manifold learning, and feedback
learning [26,28]. Recently, many automatic annotation systems have also used exter-
nal information — for example, location information— to further improve the accuracy.
Interested readers are referred to references [29,30] for review of recent works in this
area.

Tagging enables users to freely choose the keywords (tags), and arguably provides
better user experience [26]. Many social media websites, including Flickr and YouTube,
have adopted this approach and encouraged users to provide tags to facilitate data
management. In addition, the recent ESP Game motivates users to compete in annotating
photos with freely chosen keywords in a gaming environment [31]. However, the free-
form nature of tagging also poses new challenges: tags are often inaccurate, wrong, or
ambiguous, and often may not reflect the content of the media [26]. To address the issue
of “noisy” user-contributed tags, other context cues, such as time, geography-tags, and
visual features, are fused with user-contributed tags to improve the search result and to
recommend relevant tags [32]. Another approach to social tagging is to rank tags — for
example, according to their relevance to the media content [33] and/or their clarity in
content description [34] — to improve the visual search performance.
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Semantic diversity

There are a few implicit assumptions in this concept detection framework — that is, the
concept semantics is stable and the context is consistent. However, social media objects
shared online originate from an unlimited number of sources [29], and there are an
extraordinary large number of concepts that may not be shared universally [35]. The
same keyword (concept) may have totally different meanings in different contexts. For
example, on Flickr, the tag “yamagata” may refer to the Japanese town, the visual artist
Hiro Yamagata, or the singer Rachel Yamagata [25]. Therefore, it is unrealistic to build
one single classifier to learn all concepts for all media available on the networks, and it
is of crucial importance to address this “semantic diversity” or “domain diversity” issue
in media semantics in social networks [29,35].

To address this issue, some adaptive and cross-domain learning methods have been
proposed, which efficiently and effectively adapt the concept detectors to new domains
[36-38]. Zunjarwad et al. [39] proposed a framework that combines three forms of
knowledge — global (feature-based distance), personal (tag co-occurrence probability),
and social trust (finding people with correlated experience). The basic idea there is to use
social trust and personal knowledge, and to recommend annotations only from people
who share similar experience and opinions.

Emergent semantics

Social networks are highly dynamic and time-evolving, and so are media semantics. In
real-world social networks, the visual representations of abstract concepts may change
over time, and new concepts may emerge. In addition, some transient concepts that are
relevant only to a specific event may exist for only a short period time [35]. In media-
sharing social networks, it is important to consider and analyze the dynamic, emergent,
and evolutionary aspects of media semantics owing to (explicit or implicit) collaborative
activity, which is often ignored in media computing society [25]. Such investigation
helps study how human beings interact with, consume, and share media data, and opens
new views to the understanding of the relationship between digital media and human
activities [25].

Emergent semantics has been studied in distributed cognition and sociology, and is
defined by Cudré-Mauroux [40] as “a set of principles and techniques analyzing the
evolution of decentralized semantic structures in large scale distributed information
systems.” It not only addresses how semantics are represented, but also analyzes how
self-organizing and distributed agents discover the proper representation of symbols
(concepts) via active interaction among themselves [40]. Lin ef al. [25] provided a
review of recent works in emergent and evolutionary semantics in media-sharing social
networks, interested readers are referred to reference [25] and the references therein for
detailed discussion.

One challenging problem in emergent media semantics is community discovery — that
is, how to extract human communities that collaborate on certain topics or activities [25].
For example, Flickr allows people to connect their images to communities via image
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“groups,” in which images shared by a group of users are organized under a coherent
theme [41]. But the challenge is to find the right community that will ensure reachability
to other users for useful comments. Lin ez al. [42] used the concept of “mutual awareness”
to discover and model the dynamics of thematic communities. That is, users are aware
of each other’s presence through observable interaction (e.g., comments, hyperlinks,
trackbacks), and the expansion of mutual awareness leads to community formation.
The work of Lin and colleagues [43] extracted grammatical properties (the triplets of
people, actions, and media artifacts) of interactions within communities, which will help
generalize descriptors of communities. Lin ef al. [44] analyzed the temporal evolving
patterns of visual content and context in Flickr image groups, in an effort to understand
the changing interest of users and to infer the genres of images shared in the group.
Another challenge is to characterize the information flow (or communication flow)
in social networks and the roles that individuals play within the networks [25]. Such
analyses are important in information source ranking and quality assessment, and iden-
tification of suitable time periods for marketing [25]. Choudhury and co-workers [45]
proposed a temporal prediction framework to determine communication flow between
members in a network, including the intent to communicate (the probability that one
user wants to talk to another person) and the communication delay (the time taken
to send a message). Their work showed that social context greatly affects information
flow in social networks, in which social context refers to the patterns of participation
(information roles) and the degree of overlap of friends between people (strength of
ties). Choudhury et al. [46] developed a multiscale (individual, group, and community)
characterization of communication dynamics; their analysis of the technology blogs
(Engadget) showed that communication dynamics can be a strong predictor of future
events in the stock market. Choudhury and colleagues [47] studied the temporal phe-
nomenon social synchrony, in which a large number of users mimic a certain action
over a period of time with sustained participation from early users, and a computational
framework was proposed to predict synchrony of actions in online social networks.
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During the past decade, increasingly advanced technologies have made it easier to com-
press, distribute, and store multimedia content. Multimedia standards, such as JPEG,
MPEG, and H.26x [48-51], have been adopted internationally for various multimedia
applications. Simultaneously, advances in wireless and networking technologies, along
with a significant decrease in the cost for storage media, has led to the proliferation
of multimedia data. This convergence of networking, computing, and multimedia tech-
nologies has collapsed the distance separating the ability to create content and the ability
to consume content.

The alteration, repackaging, and redistribution of multimedia content pose a serious
threat to both governmental security and commercial markets. The ability to securely
and reliably exchange multimedia information is of strategic importance in fighting an
unprecedented war against terrorism. A recent high-profile leak involved a classified
video of Osama bin Laden’s camp captured by an unmanned aerial surveillance vehi-
cle, when one copy of the tapes shared between the Pentagon and CIA officials was
leaked to the news media [52]. Without effective traitor-tracing tools, different agencies
would still be reluctant to share critical information, which jeopardizes the mission of
fighting terrorism and defending national and global security. To prevent information
from leaking out of an authorized circle, it is essential that the governments have the
forensic capability to track and identify entities involved in unauthorized redistribution
of multimedia information.

In addition to the demands from homeland security, preventing the leak of multimedia
information is also crucial to the economy. The US copyright industries, which includes
prerecorded CD/DVDs and tapes as well as videos, motion pictures, and periodicals,
accounts for about 5.2 percent of the US gross domestic product (GDP), or $531.1 billion,
and are responsible for close to 6 percent of all US employment [53]. The copyright
industries, however, are experiencing a substantial decline in income and job positions,
which is largely attributed to piracy. For example, US music sales by unit were reported
to having dropped 31 percent from mid-2000 to 2003. Hollywood is actively seeking
technologies whereby each preview copy of a new movie is individually and invisibly
labeled prior to sending to Academy Award-voting members to prevent the leak to the
market. A preliminary technology based on robust watermarking was adopted in the
2004 Academy Award season and successfully captured a few pirates [54]. As with
other information security and forensics research, this “cat-and-mouse” game between
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technology developers and adversaries is becoming more intense, as smarter attacks pose
serious challenges to the existing technologies for media security and rights management.

To protect the value of multimedia, content providers must have a suite of forensic
tools that will allow them to track and identify traitors involved in the fraudulent use of
media. Traitor-tracing fingerprinting is an emerging technology to enforce digital rights
polices, whereby unique labels, known as digital fingerprints, are inserted into content
prior to distribution to assist in investigating how unauthorized content was created, and
what entities were involved in forming the fraudulent media.

This chapter reviews the basics of traitor-tracing multimedia fingerprinting. After a
brief overview of traitor-tracing multimedia fingerprinting, we steer our attention to
scalable video fingerprinting, in which users receive fingerprinted copies of different
resolutions because of network and device heterogeneity. Detailed formulation of the
fingerprint embedding and multiuser collusion attacks establishes a foundation to unveil
our technical discussion on behavior modeling and analysis in the subsequent chapters.

Traitor-tracing multimedia fingerprinting

As shown in Figure 2.1, digital fingerprinting labels each distributed copy with the
corresponding user’s identification information, known as a fingerprint, which can be
used to trace culprits who use their copies illegally. Fingerprints are embedded into the
host signal using traditional data-hiding techniques [55—57], and human visual/audio
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models [58,59] are used to control the energy and achieve the imperceptibility of the
embedded fingerprints. When the digital rights enforcer discovers the existence of an
illegally redistributed copy of multimedia, he or she extracts the fingerprint from the
suspicious copy. Correlation-based detection statistics [60—62] are often used to measure
the similarity between the extracted fingerprint and each of the original fingerprints, and
users whose detection statistics are above a predetermined threshold are identified as
suspicious attackers.

However, protecting digital fingerprints is no longer a traditional security issue with
a single adversary. The global nature of the Internet has enabled a group of attackers
(colluders) to work together and collectively mount attacks to remove the fingerprints.
These attacks, known as multiuser collusion, pose serious threats to intellectual prop-
erty rights. Analysis of the strategies, capabilities, and limitations of attackers is an
indispensable and crucial part of research in multimedia security.

Linear collusion is one of the most feasible collusion attacks that may be employed
against multimedia fingerprinting [63—65]. Given K different fingerprinted signals {X®}
of the same content, attackers generate a colluded copy Y = Y, @xX®, where the
weights satisfy >, ar = 1 to maintain the average intensity of the original multimedia
signal (thus the perceptual quality of the attacked copy). With orthogonal fingerprinting,
such an averaging attenuates the energy of the kth contributing fingerprint by a factor of
a? and thus reduces colluder ks probability of being detected. Ergun et al. [63] modeled
collusion attacks as averaging differently fingerprinted copies with equal weights (that
is, ax = 1/K) followed by the addition of noise. Their work showed that O (/N /Tog N)
colluders are sufficient to defeat the underlying fingerprinting system, where N is the
fingerprint length.

In addition to linear averaging, another important class of collusion attacks is based on
operations as taking the minimum, maximum, and median of corresponding components
of the fingerprinted signals [66]. For example, given K fingerprinted signals {X}, to
generate the jth component of the colluded copy Y(j), colluders use the minimum
value of XV(j), X@(j),...,X®)(}) and let Y(j) = min ({X®(})}). Because each
fingerprinted copy is expected to have high perceptual quality, colluders have high
confidence that Y(j) is within the JND range. Similarly, colluders can also let Y(;) =
max ({X®)(/)}) and take the maximum value of {X(;/)}. They can also use the median
value and select Y(j) = median ({X*)(;/)}). Detailed analysis of linear and nonlinear
collusion attacks on orthogonal fingerprints was provided in reference [67]. The gradient
attack was proposed by Kirovski and Mihcak [68]; this uses the combination of several
basic nonlinear collusion attacks given in reference [67]. The work of Wang et al. [61]
evaluated the collusion resistance of multimedia fingerprints as a function of system
parameters, including fingerprint length, total number of users, and system requirements.

Collusion attacks pose serious threats to multimedia intellectual property rights. To
provide reliable and trustworthy traitor-tracing performance, it is important to design
anticollusion fingerprints. In the literature, techniques from a wide range of disciplines
were used to improve the fingerprinting system’s collusion resistance. A two-layer fin-
gerprint design scheme was proposed by Zane [69], in which the inner code from
spread spectrum embedding [58,59] is combined with an outer error-correcting code
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(ECC) [70]. A permuted subsegment embedding technique and a group-based joint cod-
ing and embedding technique were proposed by He and Wu [71] to improve the collusion
resistance of ECC-based multimedia fingerprinting while maintaining the detection effi-
ciency. Dittmann et al. [72] used finite projective geometry to generate codes whose
overlap with each other can identify colluding users. The anticollusion code based on
combinatorial theories was proposed by Trappe ef al. [62]. Wang et al. [73] used prior
knowledge of the possible collusion patterns to improve the collusion resistance of the
fingerprinting systems. The anticollusion dithering technique was proposed by Varna and
colleagues [74] to resist multiuser collusion attacks for compressed multimedia. Readers
who are interested in anticollusion fingerprint design are referred to reference [75] for a
detailed discussion of current research in this area.

Scalable video coding system

Most prior works on multimedia fingerprinting focused on the scenario in which all
colluders receive fingerprinted copies of the same resolution. In reality, as we expe-
rience the convergence of networks, communications, and multimedia, scalability in
multimedia coding becomes a critical issue to support universal media access and to
provide rich media access from anywhere using any devices [76]. Thus, it is of immedi-
ate importance to study multimedia fingerprinting with scalable coding and investigate
collusion-resistant traitor tracing techniques when users receive fingerprinted copies of
different resolutions [77].

To achieve scalability, we use layered video coding and decompose the video content
into nonoverlapping streams (layers) with different priorities [76]. The base layer con-
tains the most important information of the video sequence and is received by all users in
the system. The enhancement layers gradually refine the resolution of the reconstructed
copy at the decoder’s side and are received only by those who have sufficient bandwidth.

Figure 2.2 shows the block diagrams of a three-layer scalable codec. The encoder
downsamples the raw video and performs lossy compression to generate the base layer bit
stream. The encoder then calculates the difference between the original video sequence
and the upsampled base layer, and applies lossy compression to this residue to generate
the enhancement layer bit streams. At the receiver’s side, to reconstruct a high-resolution
video, the decoder must first receive and decode both the base layer and the enhancement
layer bit streams. The upsampled base layer is then combined with the enhancement layer
refinements to form the high-resolution decoded video.

As an example, we use temporally scalable video coding, which provides multiple
versions of the same video with different frame rates. Our analysis can also be applied to
other types of scalability, as the scalable codec in Figure 2.2 is generic and can be used to
achieve different types of scalability. The simplest way to perform temporal decimation
and temporal interpolation is by frame skipping and frame copying, respectively. For
example, temporal decimation with a ratio of 2:1 can be achieved by discarding one
frame from every two frames, and temporal interpolation with a ratio of 1:2 can be
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realized by making a copy of each frame and transmitting the two frames to the next
stage.

We consider a temporally scalable video coding system with three-layer scalability,
and use frame skipping and frame copying to implement temporal decimation and
interpolation, respectively. In such a video coding system, different frames in the video
sequence are encoded in different layers.

Define Fj, F,;, and F,; as the sets containing the indices of the frames that are
encoded in the base layer, enhancement layer 1, and enhancement layer 2, respectively.
Define F@) as the set containing the indices of the frames that user i receives. Define
v 2 {i : F) = F,} as the subgroup of users who subscribe to the lowest resolution and

receive the base layer bit stream only; U?¢! 2 {i : F = F, U F,} is the subgroup of
users who subscribe to the medium resolution and receive both the base layer and the
enhancement layer 1; and U/ 2 FO = F,UF, UE,) is the subgroup of users
who subscribe to the highest resolution and receive all three layers. U?, U?¢!, and U%/
are mutually exclusive, and M = |U?| 4 [U?¢!| 4 |U%/| is the total number of users.

Scalable video fingerprinting

We consider a digital fingerprinting system that consists of three parts: fingerprint
embedding, collusion attacks, and fingerprint detection. We use temporal scalability as
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an example and analyze the fairness issue during collusion. In this scenario, fingerprints
embedded at different layers will not interfere with one another. Our model can also
be applied to other types of scalability, such as spatial and signal-to-noise ratio (SNR)
scalability. However, with spatial or SNR scalability, the content owner must take special
care during fingerprint design and embedding to prevent fingerprints at different layers
from interfering with one another. This issue of fingerprint design and embedding is
beyond the scope of this book.

Fingerprint embedding

Spread spectrum embedding is a popular data hiding technique owing to its robustness
against many attacks. Here, we briefly go through the embedding process and clarify the
notations used in the following chapters.

For the jth frame in the video sequence represented by a vector S; of length N,
and for each user i who subscribes to frame j, the content owner generates a unique
fingerprint Wy) of length N;. The fingerprinted frame j that will be distributed to user
i is XV(k) = S;(k) + IND; (k) - W\ (k), where X'(k), S;(k), and W (k) are the kth
components of the fingerprinted frame X(/?), the host signal S;, and the fingerprint vector

Wg), respectively. JND; is the just-noticeable difference from human visual models,
and it is used to control the energy and achieve the imperceptibility of the embedded
fingerprints. Finally, the content owner transmits to user i all the fingerprinted frames
{XE’)} to which he or she subscribes.

We apply orthogonal fingerprint modulation and assume that the total number of
users is much smaller than the length of the embedded fingerprints. For each frame j
in the video sequence, with orthogonal modulation, fingerprints for different users are
orthogonal to each other and have the same energy; thus, for users i, and i,

(W W = w254, @.1)

is the Dirac—Delta function. ||W]| P=N IE o2, where o2 is the variance of

where 3,’1 Jin w?

the watermark W(jl)

Multiuser collusion attacks

Attackers apply multiuser collusion attacks to remove traces of the embedded finger-
prints. As discussed by Wang et al. [61], with orthogonal fingerprint modulation, non-
linear collusion attacks can be modeled as the averaging attack followed by additive
noise. Under the constraint that the colluded copies from different collusion attacks have
the same perceptual quality, different collusion attacks have approximately identical
performance. Therefore, it suffices to consider the averaging-based collusion only.

An important issue in collusion is to ensure its fairness. We consider in this chapter
the simplest equal-risk fair collusion, in which all colluders have the same probability
of being caught. There are also other definitions of fairness, which will be explored in
Chapter 8.
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Fig. 2.3 Two trivial solutions of collusion by averaging all fingerprinted copies

When colluders receive copies of the same quality, averaging all copies with the
same weight reduces the energy of each contributing fingerprint by an equal amount,
and therefore gives each colluder the same probability of being detected. However,
achieving equal-risk fairness is much more complicated when colluders receive copies
of different resolutions owing to network and device heterogeneity, especially when the
attackers wish to generate a copy of high resolution.

With the above temporally scalable fingerprinting system, we consider a simple exam-
ple of collusion including three attackers: Alice, who receives the base layer only; Bob,
who receives the base layer and enhancement layer 1; and Carl, who receives all three
layers. Figure 2.3 shows two trivial solutions of collusion by averaging the three fin-
gerprinted copies. In Figure 2.3(a), the colluded copy includes all three layers and is
generated as follows:

* For each frame j; € F}, in the base layer, colluders average the three copies of finger-
printed frame ) that they have and generate V;,cp, = § (X}, + X3 +X3).
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* For each frame j, € F,; in enhancement layer 1, colluders average the fingerprinted
frame j, from Bob and Carl, respectively, and V e, = 1 (sz +X3).
* For each frame j3 € F,; in enhancement layer 2, frame j3 in the colluded copy equals

to that in the copy from Carl and V¢, = Xi
In the colluded copy in Figure 2.3(a), the three fingerprints corresponding to the three
attackers have the same energy in the base layer; whereas the enhancement layers contain
only Bob and Carl’s fingerprints, not the fingerprint identifying Alice. It is obvious that
among the three, Carl has the largest probability of being caught and Alice takes the
smallest risk. Consequently, the collusion in Figure 2.3(a) does not achieve equal-risk
fairness.

In Figure 2.3(b), colluders generate an attacked copy consisting of the base layer only,
and the colluded copy equals to V ez, = 5 (X} + X3, 4 X3,) for each frame j; € Fj
in the base layer. Under the collusion in Figure 2.3(b), the fingerprints correspond-
ing to the three attackers have the same energy in the colluded copy; therefore, the
three attackers have the same probability of being detected. Although the collusion in
Figure 2.3(b) ensures equal risk for all colluders, the attacked copy has low resolution.

The question, therefore, is when there is difference in the resolution of fingerprinted
copies owing to network and device heterogeneity, how colluders should conduct fair
multiuser collusion that guarantees the collective equal risk among all attackers while
still generating an attacked copy of high resolution. Assume that there are a total of
K colluders, and SC is the set containing their indices. During collusion, colluders

first divide themselves into three nonoverlapping subgroups: SC® = {ieSC:F» =

F} contains the indices of colluders who receive the base layer only; SC?! £ {i €
SC : F = F, U F,} contains the indices of colluders who receive the base layer and
enhancement layer 1; and SC* £ (i e SC: F) = F, U F, U F,;,) contains the indices
of colluders who receive all three layers. Define K?, K?¢!, and K*' as the number of
colluders in SC?, SC”¢!, and SC*, respectively.

Then, colluders apply the intragroup collusion attacks:

e For each frame j € F} that they received, colluders in the subgroup SC? generate
Zh =3 cscr X?)/Kb~

* For each frame j € Fj U F,; that they received, colluders in the subgroup SC**!
generate Z7' = 3, _gcra X /KD,

* For each frame j € Fj U F,| U F,; that they received, colluders in the subgroup SC all
generate Z%" = 3", g X\ /K.

Define F°¢ as the set containing the indices of the frames that are in the colluded
copy, and F° € {F}, F, U F,y, F, U F,; U F,,}. Then, colluders apply the intergroup
collusion attacks to generate the colluded copy {V} ere:
¢ For each frame j; € F} in the base layer, V; = ﬂllﬁl + ,Bsz»l‘el + ;33Z?1” +n;. To

maintain the average intensity of the original host signal and ensure the quality of

the colluded copy, we let 8; + B, + B3 = 1. Our analysis can also be applied to other
scenarios where 81 + B, + B3 # 1. To guarantee that the energy of each of the original
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fingerprints is reduced, we select 0 < 1, B, B3 < 1. n; is the additive noise that
colluders add to V; to further hinder detection.

e If F,; C F° and the colluded copy contains frames in the enhancement layers, then
for each frame j; € F, in the enhancement layer 1, V;, = allf-z’el + asz‘-ZH +nj,
where 0 < a1, @y < oy + o = 1, and n, is additive noise. Our analysis can also be
extended to the more general case of o) + ap # 1.

* If F,; C F¢ and the colluded copy contains frames in all three layers, then for each
frame j3 € F,, in enhancement layer 2, V;, = Z_‘}}” + n;,, where n;, is additive noise.

Colluders adjust the energy of the additive noises to ensure that frames of similar
content at different layers have approximately the same perceptual quality. We consider
challenging scenarios with a large number of colluders (e.g., more than 100 attackers). In
addition, we consider scenarios in which the energy of the additive noise n is comparable
with that of the originally embedded fingerprints and the final colluded copy has good
quality. For frame j; in the base layer, frame j, in enhancement layer 1, and frame j3
in enhancement layer 2 that have similar content, we can show that this requirement can
be simplified to ||n;,[|* & |In},||* ~ ||n;, || in the scenarios in which we are interested.

During collusion, colluders seek the collusion parameters, F¢, {Bi}r=123, and
{o}1=1.2, to ensure that all colluders have the same probability to be captured. The
detailed analysis is in Section 5.1.

Fingerprint detection and colluder identification

When the content owner discovers the unauthorized redistribution of {V; } ¢ <, the owner
applies a fingerprint detection process to identify the colluders.

There are two main detection scenarios, blind and nonblind detection. In the blind
detection scenario, the host signal is not available to the detector and serves as additional
noise during detection, whereas in the nonblind scenario, the host signal is available to
the detector and is first removed from the test copy before detection. Different from
other data-hiding applications in which blind detection is preferred or required, in many
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fingerprinting applications, the fingerprint verification and colluder identification pro-
cess is usually handled by the content owner or an authorized forensic party who can have
access to the original host signal. Therefore, a nonblind detection scenario is feasible
and often preferred in multimedia fingerprinting applications.

For each frame V in the colluded copy, the detector first extracts the fingerprint Y; =
(V; —S;)/JND;. Then, the detector calculates the similarity between the extracted
fingerprint {Y;} ;cre and each of the M original fingerprints {W_(/-i) }jer®, compares with
a threshold, and outputs a set sC containing the estimated indices of the colluders.
We use the correlation-based detection statistics to measure the similarity between
the extracted fingerprint and the original fingerprint. The fingerprint detector can use
fingerprints extracted from all layers collectively to identify colluders. With the collective

fingerprint detector, for user i, the detector first calculates £ 2 FO A Fe, where F®
contains the indices of the frames received by user i and F¢ contains the indices of the
frames in the colluded copy. Then the fingerprint detector calculates

NG = [ 3 (v, W) / > IWPIR, 22)
JeF®

JeF®

where ||Wy)|| is the Euclidean norm of W(]l) The fingerprint detector can also use fin-
gerprints extracted from each individual layer to identify colluders; the details will be
discussed in Chapter 6. Given the M detection statistics {7 N ®y i=1,...m and a predeter-
mined threshold 7, the estimated colluder set is SC = {i : TN® > h}.

Performance criteria

To measure the temporal resolution of the colluded copy, we use the total number of
frames in the colluded copy L¢ = |F¢| (or, equivalently, the frame rate of the colluded
copy). L = |Fp|, L = |Fp| + |F.1], and L€ = |Fp| 4+ | Fe1| + | Fez| correspond to the
three scenarios in which the colluded copy has the lowest, medium, and highest temporal
resolution, respectively.

To measure the collusion resistance of a multimedia fingerprinting systems, the most
commonly used criteria are

* Py, the probability of capturing at least one colluder;

* Py,: the probability of accusing at least one innocent user;

* E[F,]: the expected fraction of colluders who are successfully captured; and
* E[Fy,]: the expected fraction of innocent users who are falsely accused.

Based on these criteria, both the fingerprint detector and colluders can evaluate the
effectiveness of their strategies to make decisions.
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With recent advances in networking, multimedia signal processing, and communication
technologies, we have witnessed the emergence of large-scale video streaming social
networks, in which millions of users form a distributed and dynamically changing
infrastructure to share video streams. Statistics showed that more than 75 percent of the
total US Internet audience have viewed online video, and the average online video viewer
watched four hours of video per month [78]. With the fast deployment of high-speed
residential network access, video is expected to be the dominating traffic on the Internet
in the near future.

The traditional method for video streaming over the Internet is the client-server
service model. A client sets up a connection with a video source server and video
content is directly streamed to the client from either the video source server or a nearby
content delivery server. The most popular client-server video stream service nowadays
is YouTube, which drew 5 billion US video views in July 2008. However, client-server—
based video streaming methods incur expensive bandwidth provision cost on the server.
For example, the streaming rate for a TV-quality video is about 400 kilobits per second
(kbps), which makes the client-server video streaming solution very expensive when
more users join the system.

P2P video streaming encourages users to upload their downloaded data to other users
in the network; each user acts as a server and a client at the same time. The system relies
on voluntary contributions of resources from individual users to achieve high scalability
and robustness and to provide satisfactory performance. Cooperation also enables users
to access extra resources from their peers, and thus benefits each individual user as well.
These video streaming users form one of the biggest multimedia social networks on the
Internet, and P2P video streaming technology has enjoyed many successful deployments
to date.

Based on the network structure, current P2P streaming systems can be classified into
two categories: tree-push [79] and mesh-pull. Tree-based systems have well-organized
overlay structures; mother peers proactively send or push the video streams to their
children peers. The major drawback of tree-based streaming systems is their vulnerability
to membership dynamics. When a peer leaves the system, the video delivery to all the
peer’s children in the tree will be temporarily disrupted, which causes significant quality
degradation. Over decades, many tree-push systems have been tested and evaluated in
academia, but they have seldom taken off commercially.
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In mesh-pull systems, peers do not have to be structured as a static topology. Instead, a
peer dynamically connects to some other peers, called neighboring peers, to pull videos
from one another, and they form a mesh-shaped overlay. The peering relationships can be
established or terminated dynamically based on the content and bandwidth availability
of each peer, and they periodically exchange information about the availability of video
chunks in their buffers. A recent simulation study [80] suggests that mesh-pull P2P
video streaming systems have better performance than tree-push systems. The mesh-
pull structure is also widely used in other P2P systems, including file sharing. BitTorrent,
one of the most popular P2P file sharing systems, also employs mesh-pull structures.

Although the dynamic neighboring mechanism provides robustness to peer churns
when users join and leave the system frequently, it makes the video distribution efficiency
unpredictable. Also, neighbors can be any peers in the system, and different video chunks
may go through different routes to reach the destination peers. Such a problem may cause
video playback quality degradation, such as long startup delays or frequent playback
freezes. Although mesh-pull P2P systems have these disadvantages, they still enjoy a
large number of successful deployments to date, with tens of thousands of simultaneous
users, because of their simple design principle and inherent robustness against a highly
dynamic P2P environment. Mesh-pull systems include PPLive, PPStream, and many
others. Each system has its own neighbor selection and peer cooperation policies, and
the operation of the mesh-pull system relies on the bandwidth contribution from each
peer.

In current P2P streaming systems, no reciprocity mechanisms, such as those used in
BitTorrent, are deployed to encourage resource sharing between peers and to address
the stringent need of receiving video chunks before the playback time. This encourages
researchers to investigate how to stimulate user cooperation in P2P live streaming
systems.

In this chapter, we explore the general design, challenges, and recent developments
of mesh-pull P2P video streaming. Because user cooperation dominates the system
performance, we then review current research on behavior modeling and strategy analysis
of peer-to-peer systems.

Mesh-pull structure for P2P video streaming

In this section, we describe several key design components in mesh-based systems and
the fundamental requirements for a successful mesh-pull P2P video streaming system.

Mesh formation

There are three major components of a P2P mesh-pull video streaming network: the
track server, the video server, and streaming peers.

* The track server is to keep track of the active peers in each video session and the
list of video streams. It provides information of streaming channels, buffer maps, and
links to each peer, such that new peers who just join the network can download video
data from multiple peers who are watching the same media content.
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Fig. 3.1 A peer’s buffer map

* Video server: A video stream is divided into media chunks and is made available from

the video server for broadcast. All information about the video stream is available at
the video server.

The streaming peer contains a streaming engine and a media player in the same
machine.

The streaming engine exchanges video buffer map information with other peers,
delivers chunks to other peers upon request, sends chunk requests to other peers, and
downloads video chunks from other peer nodes or the video streaming server. The
buffer map information includes the buffer offset (the time index of the first chunk
in the buffer), the width of the buffer map controlled by the peer, and a binary string
indicating which chunks are available in the buffer. An example of the buffer map is
shown in Figure 3.1. A unique video ID is also contained in each buffer map message
to differentiate between different video streams.

Depending on the cooperation rule of each video streaming system, peers coop-
eratively deliver video chunks among themselves to some extent via the streaming
engine. After peer 1 receives peer 2’s buffer map information, peer 1 can request
one or more chunks that peer 2 has advertised in its buffer map. Peers can download
chunks from tens of other peers simultaneously. Video chunks are usually transmitted
by TCP protocol, but in recent developments, chunks can also be delivered by UDP.
Different mesh-pull systems may differ significantly on their neighbor-peer selection
and chunk-requesting algorithms.

The received chunks are decoded and reassembled into the raw video format,
which are then forwarded to the media player for playing. When the client application
software is started, the linked media player is launched, the address of the video stream
is provided, and the media player sends an HTTP request to the streaming engine. Upon
receiving the request from the media player, the peer’s streaming engine assembles its
chunks into a media file and delivers it to the media player. For video streaming, new
chunks continuously arrive at the peer’s streaming engine, and the streaming engine
continuously adds data to the file. For chunks that do not come before the playback
time, the media player uses the most recent available frames to replace them in the
video stream. The media player first buffers the received data and starts to play the
video once it has buffered a sufficient amount of continuous video stream. If too many
chunks do not arrive on time, the media player will pause the video and wait until
enough chunks are buffered.
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When a new peer joins a mesh-pull video streaming system, it first connects to the
track server. It then downloads a list of channels distributed by the streaming network
from the track server. After the user selects the channel, this peer node registers itself in
the track server and retrieves an initial list of peers that are currently watching the same
video stream.

After receiving an initial list of active peers from the track server, the new peer will
try to make partner relationships to a subset of the peers in the list, through TCP/UDP
connections. The peering connection is established based on the mutual agreement
between the requesting and the requested peers. If a connection request is accepted by
a peer on the initial list, the new peer will add this peer to its neighbor list and obtain
additional peer lists, which it aggregates with its existing peer list. After obtaining
enough neighbors, the local peer starts to exchange video content with its neighbors.
The definition of enough peers and when and how a peer refreshes the neighbor list
differ from system to system. Several factors are usually considered when designing the
connection establishment mechanism. For example, a peer has to consider its current
number of connections, uploading and downloading bandwidth, and CPU and memory
usage when responding to another peer’s request for establishing relationships. The
packet delay and loss characteristics on the network path between the two peers should
also be taken into account to efficiently exchange video chunks between the peers.

Using this mechanism, each peer maintains and enlarges the list of other peers watch-
ing the same video. A peer on the list is identified by its UDP and TCP signaling port
numbers and its IP address. The peer discovery and peer registration are usually running
over UDP; when UDP fails, TCP can be used for the same purpose. The signaling over-
head at the track server is considerately reduced by using the distributed peer discovery
mechanism. Therefore, each track server is able to manage a large number of streaming
users, in the order of millions.

To deal with peer churn, in which users frequently join and leave the system, a peer
constantly updates its peer list during the session by sending small “ping” messages to
the peers on the list, and finds new peers by exchanging its peer list with its neighbors
through the TCP connections. A peer can also go to the track server to ask for a fresh list
of active peers. If a peer wants to leave the session for good, it will notify the track server
and its neighbors on the list to have its information removed there. However, when a peer
disappears from the network unexpectedly — for instance, because of a computer crash —
the leaving peer will still be on others’ neighbor lists. To deal with such a problem, peers
should regularly exchange pinging messages to make sure others are still in the network.
A peer will be removed from other peers’ lists if no pinging messages are received or
responded within a predefined timeout period.

After establishing connections with enough number of neighboring peers, peers buffer
and share video chunks with one another. Each peer first exchanges its buffer map with
others, selects the video chunks that it needs, and requests the desired chunks from the
video server or other peers. Clearly, when a peer requests chunks, it should give a higher
priority to the missing chunks that are to be played first. Most likely, it also gives a higher
priority to rare chunks — that is, chunks that do not appear in many of its partners’ buffer
maps [81]. Peers can also download chunks from the original video server.
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Video streaming services

P2P video streaming applications can be divided into two categories: live streaming and
video-on-demand service. In this subsection, we discuss the difference between these
two video streaming services.

Live streaming service enables users to watch the live broadcast of video stream
simultaneously, with a small playback time difference. Users watching the live video
stream are synchronous and are viewing the same part of the video. As a result, video
chunks downloaded by one peer are most likely to be useful to many other peers in
the network. Therefore, the buffer length of the peers can be short and users can easily
cooperate with one another.

Video-on-demand service allows a user to watch any part of the video. Unlike live
streaming service, video-on-demand offers more flexibility and convenience to users. It
also realizes the goal of video streaming systems: watch whatever you want whenever
you want. Video-on-demand has been identified as the key feature to attract consumers
to video streaming services such as PPLive. For example, many users would like to
watch a live broadcast of the Super Bowl using a live streaming service. When some
users want to revisit the game, they would like to use the video-on-demand service to
freely choose the part of the game they would like to watch.

In video-on-demand service, although a large number of users are watching the same
video, they are asynchronous and different users may watch different parts of the same
video. In P2P video-on-demand, if video chunks are downloaded in the order of their
playback time, a new peer can make little contribution because it is very likely that it
does not have the chunks that other existing peers are looking for. Meanwhile, many
existing peers can help the new peer, as they have watched the beginning part of the
video and those chunks may be still in their buffers if their buffers are long enough.
In such a case, tree-push peer-to-peer systems are not feasible for video-on-demand
applications. This is because they are originally designed to implement multicasting at
the application layer, and traditionally, users in a tree-push overlay are synchronized and
receive the content in the order the server sends it out.

The challenges to offer video-on-demand services using mesh-pull P2P networks
are at different levels. At the peer level, the video chunks must be received before
their playback time, and ideally, they should be requested and downloaded in the same
order as their playback time. However, the mesh-pull structure for video live streaming
introduced in the previous section cannot solve this problem, because the track server
keeps track of “all peers” watching the video but not their buffer map information.
Therefore, when a new peer retrieves the peer list from the track server, it will be
difficult to find the desired neighbors who have the chunks that it needs. To solve this
problem, an extra record of each peer’s viewpoint has to be kept in the tracking server to
increase the efficiency of mesh formation. At the system level, the content sharing must
be enabled among asynchronous peers, including keeping track of every user’s playback
in addition to the peer list. Hence, supporting video-on-demand using a mesh-pull P2P
technique is not straightforward.
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In a mesh-pull P2P video streaming system, to fully utilize users’ upload bandwidth
and to achieve the highest possible system throughput, it is better that video chunks at
different users’ buffers be different so there are always some chunks to exchange between
users. Such an observation is called the diversity requirement in mesh-pull P2P systems.
The content diversity improves the overall system throughput. However, if the system
has high content diversity, video chunks are retrieved in a fairly random order, which is
contradictory to the fact that the video chunks must be played in the sequential order of
their playback time. As a result, the effective rate at which users can smoothly play a
video stream may not be high. Because of the asynchronous nature of video-on-demand
service, users are interested in different parts of content at a given moment, and the
availability of different video chunks is also influenced by users’ behavior. Thus, the
challenge of designing a mesh-pull P2P video-on-demand scheme rests on the balance
between the overall system efficiency and the conformation to the sequential playback
requirement for asynchronous users.

A common solution is to set priorities for video chunks and increase the buffer length.
First, in video-on-demand systems, peers should store all video chunks that they have
received after they start watching the video. Such a large video buffer exists to increase
the possibility of mutual interest among peers. Second, all missing video chunks are
divided into two sets: a high-priority set and a low-priority set. The high-priority set
contains missing video chunks that are close to their playback time, and the low-priority
set includes missing chunks whose playback time is far away or has already passed. A
selection process is used to decide which video chunk the peer should request in the
next round. Each user sets a probability p such that a chunk in the high-priority set
is requested with probability p, whereas a chunk in the low-priority set is downloaded
with probability 1 — p. By setting the value of p greater than 1/2, chunks in the high-
priority set will be requested earlier than those in the low-priority set. Intuitively, if
a peer chooses a larger p, the chance of receiving a video chunk before its playback
time is larger, which results in a smoother and higher-quality video. On the other hand,
a smaller value of p increases the diversity of video chunks and would lead to better
overall system efficiency, which means that peers help each other by a larger degree at
a cost of their own video quality degradation.

Optimal allocation of the resources across different parts of the video and efficient
management of the mesh overlay are important design issues. Annapureddy and col-
leagues [82] divided a video into segments, with each segment containing a set of video
chunks. Segments close to the playback point are given high priorities to be requested
first, which is very similar to the previous methodology. The difference is that there
are more than two sets, which offers more freedom for users. Because different users
have different concerns, increasing the number of sets increases the content diversity
and the system throughput. Annapureddy et al. also used network coding to improve
the resource utilization efficiency [82]. In the work of Dana ef al. [83], the video server
helps when the requested video chunks are not available and when the playback time
is imminent. Unlike live streaming systems, both the video server and the track server
keep record of each peer’s current playback points. Upon receiving requests from peers,
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instead of delivering the requested chunks in a round-robin manner, the video server
compares the playback time of the requested chunk with the requesting peer’s current
playback point. If they are very close, the video server will deliver that chunk first.

Challenges in peer-to-peer video streaming

We now explore the challenges and capacities of the mesh-pull P2P video streaming
systems.

Peer heterogeneity

In P2P systems, users are heterogeneous, with different processing capacity and upload
and download bandwidth, and different peers may choose to contribute different amount
of upload bandwidth. In addition, peers can join and leave the system at any time, causing
frequent membership updates. Peer heterogeneity and peer churn pose major challenges
in designing high-quality P2P video streaming services; it is desirable to enable all peers
to watch smooth high-quality videos without freezing or frame skipping, except for a
short delay at the beginning.

One solution to address the peer heterogeneity issue is to use this heterogeneity —
that is, to ask peers with larger upload bandwidth to help others by a greater amount.
The intuition behind this design is that because the quality of service of a P2P video
streaming system is determined largely by the total upload bandwidth contributed by
all peers in the system, peers with higher upload bandwidth should be able to help
more peers to fully use their upload bandwidth. The server divides the peers into two
groups, ordinary nodes and super nodes; super nodes have much higher upload capacity
than ordinary ones. If the upload capacity of some ordinary peers cannot sustain the
video playback rate of their neighbors, super peers will be asked to contribute additional
upload bandwidth to help these ordinary peers. Such a technique is called the super node
scheme and is used widely in many recent systems. For example, in current P2P video
streaming systems, most of the peers are broadband residential peers with DSL or cable
connections, and they can be viewed as ordinary peers whose typical upload capacity is
around or below 500 kbps. Some other peers are institutional peers with high-bandwidth
Ethernet access, such as peers in campus networks. These institutional peers usually
have upload capacity larger than a few mega-bps and can serve as super nodes.

However, the super node scheme has its limitations. The ratio between ordinary nodes
and super nodes dominates the streaming system’s capability to sustain satisfactory
quality of service [84]. When the ratio of super nodes to ordinary nodes exceeds a
critical threshold, the super node system can perform well. Otherwise, the system would
perform very poorly.

Quality metrics

Because users in a mesh-pull video streaming system are watching videos, when evaluat-
ing the service quality they consider not only the traditional quality of service measure-
ments, such as packet loss rate and delay, but also the reconstructed video equality. In the
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literature, the following criteria are often used to evaluate the quality of the streaming
service.

* Startup delay is the interval from the time one peer selects a video to the time its
media players starts playing the video. This time period is used to buffer a sufficiently
large number of continuous chunks to address the dynamically changing network
conditions and the peer churn. Although the startup delay is unavoidable for continuous
playback, compared with the traditional TV services over cables that have negligible
delays, it may cause a long waiting time and unhappy experience when a user switches
the channel. For example, PPLive forces peers to buffer tens of seconds of nearly
continuous video chunks before the video is played, which is much larger than that in
traditional TV services.

* Playback lag is a serious issue in live-streaming service, when different users have
different playback time and some peers are several minutes behind other peers. As a
result, if users are watching the live Super Bowl, some peers might see a touchdown a
few minutes later than others, which is an unpleasant experience. Additionally, because
the video buffer in live-streaming services is usually short, peers with larger playback
lags will not be able to contribute useful chunks to peers with smaller lags. As a result,
huge playback lags will decrease the content diversity and the upload capacity of the
system.

* Video distortions include freezing, frame skipping, rebooting, and low bit rate. Video
streaming has real-time requirements for both live broadcast and video-on-demand
services. The real-time requirement posts a stringent playback deadline for each video
chunk. Although different users may have different playback deadlines for the same
chunk as a result of the playback lag in live streaming or asynchronous playback in
video-on-demand, the chunk still needs to be received before its playback deadline for
each peer.

Depending on the system design, for a particular peer, there are two possible
strategies when a chunk does not arrive before its playback deadline, which can also
be adopted when a small group of continuous chunks do not arrive on time. One method
is to have the media player freeze the playback with the most recently displayed video
frame and wait for the late chunk to arrive. From the end user’s perspective, freezing
is the same as the video being paused by others. The other strategy is to skip frames
encoded in the late chunk and to play the next available chunk. By doing so, the
streaming engine must advance the deadlines for the subsequent chunks accordingly,
which can be done by changing the buffer offset shown in Figure 3.1. If the system
adopts frame skipping for late chunks, users will experience sudden movement of
the video. In terms of video quality, both freezing and frame skipping are undesired,
but different services would have different preferences of these two strategies. For
example, the frame-skipping strategy is more desirable in live-streaming systems
because the freezing strategy will increase the playtime lag to wait for late chunks.

When there are too many continuous chunks that do not arrive before their play-
back time, instead of freezing for a long time or skipping many frames, the stream-
ing engine will terminate the connection with the player and reinitialize the entire
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streaming process. Such a phenomenon is called rebooting. The rebooting period
directly corresponds to the startup delay, as it is equivalent to starting a new session.

Most video streams shared over P2P streaming systems are encoded into low bit
rates and thus have low quality. This is a result of the large bandwidth consumption of
video streaming applications, and the fact that video chunks must be received before
strict playback deadlines. The super node method can help increase the video bit rate
and improve the video quality by putting more loads onto the super peers. However, it
is questionable whether super peers and their Internet service providers will have the
capability and the incentives to provide the additional upload bandwidth.

The system designer of P2P video streaming service must take into account the
preceding factors in addition to the network quality of service. For example, to address
the issue of noticeable startup delay, many current P2P video streaming systems, such
as PPStream, cache some advertisement videos in the end user’s machine. When a
user starts the application software and chooses a video, these commercials are played
while the actual video streams are downloaded in the background. For example, in
PPStream, these commercials are fifteen-seconds long and are played every time the
user starts watching a new channel. Another possibility to reduce the startup delay and
to maintain smooth playback is to include redundant downloading or network coding
of video chunks. However, both schemes increase the amount of video traffic over the
networks and the demand on each user’s upload bandwidth.

Security threats

The distributed nature of mesh-pull P2P streaming makes the systems vulnerable to
various attacks, in which malicious users aim to break the system or decrease the
throughput as much as possible. The security threats can be divided into two categories,
availability threat and integrity attack.

Availability threat: The availability of a system is violated if the system cannot respond
to users’ requests and deliver video streams to its users. An effective attack to the system
availability is the denial-of-service attack [85]. For example, a malicious attacker may
create a large number of nonexistent peers who pretend to be interested in the same
channel and register all of them in the track server’s peer list. Because each peer is
identified only by its IP address and the UDP/TCP port, it is very easy to create many
fake identities that will not respond to any chunk requests. As a result, a nonmalicious
peer will have difficulties identifying other nonmalicious peers and downloading video
chunks that it needs, because it wastes a great deal of time by sending chunk requests
to these fake peers. In addition, malicious attackers may use the many fake identities
that they generate and continuously send requests to the server to occupy its bandwidth
and CPU processing time. It may disable the video server from answering requests
from nonmalicious users and make the content unavailable to other users. This attack
is particularly easy to employ if the video content server is a normal desktop/laptop
computer with limited CPU power and bandwidth, which is often the case for user-
generated videos.
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Another example is that malicious users can waste other peers’ local resources. The
malicious peers can create a fake buffer map with the victim peer’s ID and claim that
the victim peer has many video chunks. By doing so, other peers would send chunk
requests to the victim peer, because most of the chunks are “claimed” to be available at
the victim peer’s side. As a result, the victim peer’s CPU power and network bandwidth
would be largely consumed but not helping other nonmalicious peers.

Another concern regarding the system’s availability occurs when streaming video
over wireless networks. Wireless systems are particularly vulnerable to jamming attacks,
eavesdropping, and active interference. Therefore, it is important to develop effective
and mature security mechanisms for wireless networks. Many security mechanisms have
been developed for WiFi and WiMax to address this issue, but Bluetooth is still in its
developing phase with security flaws, which makes Bluetooth easy to attack.

Integrity threat: Malicious users can attack the P2P streaming system’s integrity by
modifying the video chunks themselves. They can mix the video stream with fake and
useless chunks, which will significantly degrade the quality of the reconstructed media
at the receiver’s side. Such an attack is called a pollution attack. To address the stringent
time constraint, peers will request a desired chunk as soon as they find it in the neighbor’s
buffer map. The chunk exchange is very frequent, and copies of the chunk can be spread
out in the system very quickly. Such a fast-spreading feature is designed to enhance the
content diversity and to improve the system throughput. However, the polluted chunks
can also be propagated over the network quickly, not only by malicious users but also
by nonmalicious users who are not aware of the existence of a polluted chunk in their
buffers. After a polluted chunk is received and before it is decoded, the polluted chunk
stays in the buffer and may be unintentionally forwarded by the nonmalicious user to
other peers. A study by Liang and co-workers [7] demonstrated the potential damages
that the pollution attack may cause to P2P streaming systems. In the experiment, when
there were no attackers presented, one specific video channel had more than 3,300
viewers. When the polluted attack started, the video quality dropped drastically and
became unacceptable. As a result, a large number of peers eventually left the system,
and the number of viewers decreased to about 500 within thirty minutes.

To resist pollution attacks, it is important to detect polluted chunks and identify
attackers (polluters) who intentionally send polluted chunks. Pollution detection schemes
often use digital signatures and authentication tools, such as the chunk signing algorithms
proposed by Liang et al. [7], to detect polluted chunks and remove them from the
network as early as possible. To identify polluters, trust management [86] can be used
to distinguish malicious attackers from nonmalicious users who unintentionally forward
polluted chunks.

User dynamics in peer-to-peer video streaming

In the previous section, we discussed the challenges of mesh-pull P2P video streaming
systems. One possible way to improve the quality of service is to change the system
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architecture, which may yield additional cost. For example, to reduce the startup delay
without scarifying the smooth play of video, we can apply redundant downloading and
network coding to video chunks. Such a scheme increases video traffic redundancy and
consumes much more upload bandwidth, which are not desirable to resource-limited
P2P video streaming systems.

Let us think from a different perspective of P2P systems. The gain of mesh-pull
P2P design comes from user cooperation, and the robustness of the system comes
from its independence from the underlying network structure. From this point of view,
designing better peer cooperation mechanisms is very important. For example, better peer
selection strategies and video chunk scheduling schemes can help reduce the playback
lags. Therefore, the key to the success of mesh-pull P2P video streaming systems is to
develop optimal cooperation strategies.

In this section, we introduce current work on peer selection and incentive mechanisms.

Peer selection

In P2P systems, peers seek collaboration from other peers in the network. Because of
the limitation of peer upload capacity and high bandwidth demand for real-time video
delivery, choosing the right peers with whom to collaborate is critical to the system
performance. For example, after a peer has decided which video chunk to request, the
peer must choose one or several peers from whom to request the chunk. The most
straightforward solution is to ask a neighbor with the best connection. However, such
a strategy may not always perform best. For example, different packets from the same
sender to the same destination may be routed through different paths with different
transmission delays, and some “popular” peers may receive multiple requests and may
not be able to answer all of them on time. In addition, once the chunk to request is
decided, a peer also needs to determine how many peers it contacts to request the
chunk. Increasing this number may help increase the probability of receiving the chunk
before its playback time, but it also increases the network load. This is particularly
problematic when two or more copies of the chunk are routed through the same network
bottleneck.

Nevertheless, because the mesh-pull P2P system lacks a central computing unit and
usually contains a large number of users, computation of the optimal solutions for all
users is not applicable. In addition, each peer has only partial information about the
network and, therefore, the optimal strategy calculated by each peer will unlikely be
the global optimal solution. Furthermore, given the fact that the connections between
different pairs of peers are different and peers leave and join the system unexpectedly,
using the same strategy for all users will not be optimal, and peer selection is still an
open problem in P2P streaming systems.

One simple solution is random guesses and iterative updates of the peer selection
strategy. Leveraging the fact that requesting the same video chunk from multiple peers
does not always improve the throughput (e.g., video quality), iterative mechanisms can
be used to identify a subset of senders that maximizes the overall throughput [87]. To
request a certain video chunk, the requesting peer first randomly selects a peer from the
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list of peers who have the desired chunk, and puts it as the first peer in the active-sender set
maintained by the requesting peer. The requesting peer then randomly and periodically
adds another peer from the list of available neighboring peers to the active-sender set.
Meanwhile, the requesting peer monitors the variations in the throughput of the entire
active-sender set and that of each individual active sender. If the overall throughput of
the active-sender set increases after adding the most recently selected sender peer, the
new sender peer is kept in the set. Otherwise, it is replaced by another randomly selected
peer.

The above iterative method of choosing the active-sender set can increase the diversity
and reduce the probability that packets from two sender peers are congested at the same
bottleneck link. However, if the access link from the Internet service provider (ISP)
to the requesting peer is the bottleneck, changing the number of sender peers does
not improve the overall throughput [87]. One way to address this issue is to introduce
an approximate partial topology just sufficient for peer selection. The first step is to
build the logical topology. A simple physical topology can be easily built using tools
such as traceroute [88], in which the requesting peer asks all the candidate peers in the
active list to perform traceroute toward the requesting peer. Then, the logical topology is
constructed by merging consecutive links with no branching points into one segment. The
approximated topology is now initialized and will be refined by the available bandwidth
and the packet loss rate.

The available bandwidth of a path is the maximum rate that such a path can provide to
a flow without reducing the rate of other traffic, and both available bandwidth and packet
loss rate can be measured by sending probing packets. After obtaining the approximated
graph to all peers on the neighbor list, the requesting peer finds the active-sender set that
maximizes the expected aggregated rate at the requesting peer’s side, under the constraint
that the download bandwidth of the requesting peer is not exceeded. There are several
peer-selection algorithms based on approximated topology. For example, because video
chunks in the streaming network have strict playback deadlines, network delay should
be considered in peer selection. Based on that, instead of considering the packet loss
rate when constructing the estimated network graph, the requesting peer can probe the
packet delay and select the active peers to minimize the product of the delay and the
transmission rate. By doing so, the requesting peer optimizes bandwidth utilization with
minimal end-to-end latencies based on its limited knowledge.

Up to now we have discussed several methods for a peer to construct its active-
sender set, but we have not studied how much load the requesting peer should put
on each sender peer. Most of the peer selection schemes need authentication of other
peers and must keep track of other peers’ reputations. An example is to introduce the
pseudopayment mechanism, with which the peers must pay some credits to each other
for chunk forwarding. In the pseudopayment mechanism, the requesting peer i “owes”
the sender j the cost of transmission upon receiving the chunk, and when peer j sends a
request in the future, peer i must pay back and send the requested video chunks. In this
scheme, each peer i must first decide the cost ¢; to transmit a chunk. When a requesting
peer chooses which peers to ask for a chunk, it seeks the peers with the minimum total
cost [89].
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Incentives

A big difference between a traditional client—server streaming system and a P2P stream-
ing system is that the capacity of a P2P system grows dynamically with the number of
users. Ideally, if there are more users, the streaming system will have a larger capacity.
However, such a statement has an implicit assumption — that users are always willing to
help each other. This is not true, given the selfish nature of human beings. An evidence
of user’s selfishness is the presence of free riders who only want to download the video
stream but do not share their video chunks with others.

As mentioned before, selecting peers only based on the network connection or stream-
ing delay is not robust against free riders or attackers. A possible solution to address free
riding is the tit-for-tat policy, under which peers copy each other’s previous actions and
punish noncooperative behavior by playing noncooperatively. That is, peer i answers
peer j’s chunk request only if j has previously sent chunks to i, and they send the same
number of chunks to each other. Tit-for-tat is used in BitTorrent and has been shown
to be effective in reducing the number of free riders. Still, for different P2P streaming
applications with different requirements, it is important to design incentive mechanisms
carefully to stimulate cooperation among peers. Here we introduce various aspects of
incentive mechanisms in P2P streaming.

One popular category of incentive mechanisms is to introduce the concept of differ-
ential service. The idea is to give proper reward to cooperating peers so everyone has
incentives to help others. There are several requirements that a successful differential
service based incentive mechanism should meet.

(1) First, the system capacity should increase after a new peer joins the system. In other
words, after the starting phase, the differential service should benefit all request-
ing peers and allow them to receive the video stream earlier when compared with
an incentive mechanism that does not provide differential service. Low perfor-
mance at the beginning is tolerable, but the differential mechanism should not deny
newcomers.

(2) Next, ideally, it should be calculated and executed in a distributed fashion. Because
of the fully distributed nature of a mesh-pull P2P system, the assumption of the
existence of a central authority to enforce the cooperation policy may not be realistic
and desirable. Although the track server keeps a list of all active peers and the
channels they are currently viewing, when there are a large number of users with a
huge amount of information flow among them, it will be challenging for the track
server to monitor all users’ interactions and enforce cooperation.

(3) Furthermore, if a peer cooperates at a larger amount and contributes more upload
bandwidth, the probability that its requests are replied to should be larger, with
shorter waiting times and smaller buffering delays.

If the differential service can satisfy these requirements, it gives peers incentives to
contribute more upload bandwidth and to maximize the available resources in the
network.
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Peer selection based on differential service

Incentive mechanisms based on differential service have been used to design many
cooperation strategies for mesh-pull P2P streaming systems. We start with the peer
selection algorithms. The basic idea is to link a user’s utility with its contribution to others
so users have incentives to help others by a larger amount [90]. To get a quantitative
measure of a user’s contribution, the first step is to convert a user’s contribution into
a score, and map it into a percentile rank among all users. A user’s rank determines
whom it can ask for video chunks; a peer with a higher rank has more flexibility in peer
selection and has a better chance to receive high quality videos. For example, a peer
selection scheme may allow a peer to request video chunks only from peers with equal
or lower ranks. Therefore, cooperative users who contribute more upload bandwidth can
earn higher ranks and eventually receive high-quality videos. Meanwhile, free riders
have very low ranks and thus limited choice in peer selection, resulting in low video
quality.

By converting a user’s contribution into a percentile rank, this peer selection scheme
employs users’ relative contributions instead of their actual contributions. Therefore,
there will be more competition among peers and hence more incentives to contribute as
many resources as possible. To address the issue that users join and leave the system
frequently, users’ ranks should be updated periodically.

When a peer first joins the system, it begins with a rank of zero and receives the
best-effort service with the lowest quality offered by the system. The quality of this
service may vary from system to system, and is highly unpredictable. If a user wishes
to receive a better-quality streaming service, it must increase its rank by contributing to
the system. A rational user will determine its optimal contribution level to maximize its
utility, and consider both streaming quality and the cost of collaboration.

Chunk answering based on differential service

The preceding rank-based incentive mechanism addresses only the freedom of a request-
ing peer to choose the supply peer. Here we present an example of how a supply peer
chooses which peers to serve upon receiving multiple chunk requests [91]. Each peer
divides the requesting peers into two classes, depending on their contributed upload
bandwidth. The higher class includes those who contribute larger upload bandwidth and
whose requests will always be answered. The lower class contains peers who contribute
smaller upload bandwidth, and whose requests will be answered with a probability
smaller than 1. The differential chunk-answering policy favors higher-class requesting
peers, leads to a faster amplification of the P2P system capacity, and ultimately benefits
all requesting peers. This is reflected by the simplicity of the algorithm and the shorter
average waiting time for all requesting peers. The class size is adaptively adjusted based
on interactions with other peers to maximize the performance.

In the preceding algorithm, each peer makes its own decision on the partition of
the requesting peers into two classes and on the class size; it is a fully distributed
algorithm suitable for mesh-pull P2P system. Compared with the nondifferential chunk-
answering mechanism, the differential mechanism can achieve a higher chunk-answering
rate and a shorter average buffering delay. Furthermore, the chunk-answering mechanism
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distinguishes requesting peers who contribute more upload bandwidth from those who
contribute less, and creates incentives for peers to contribute as much as possible.

Incentives for super nodes

The preceding rank-based peer selection mechanism has a serious problem when there
are users with high bandwidth capacity. In that scheme, a user’s rank is its relative, but not
absolute, contribution, and users with high bandwidth capacity do not have incentives
to contribute more than others as long as they can maintain their ranks. Meanwhile,
because peers with lower ranks cannot send requests to these high-capacity peers, peers
with higher ranks will receive fewer requests and end up contributing less to the network
even when they have unused resources. Also, as mentioned earlier, one way to fully
use the peer heterogeneity is to put more load on peers with higher capacity, which are
referred as super nodes. But before the super-node scheme can be applied, incentives
must be provided to the super nodes so that they are willing to contribute more upload
bandwidth.

(1) Centralized methodology: An example of providing incentives for super nodes is
the taxation model [92]. The basic idea is to encourage peers with rich resources
to contribute more bandwidth and to subsidize peers who are poor in resources. By
using the taxation model, the bandwidth resource is mapped to the wealth of peers,
and the wealth will then be redistributed. To efficiently redistribute the wealth, the
tax rate must be carefully designed so that even though peers with more resources
must pay a higher tax, they are still willing to participate in the streaming service.
Because peers are strategic, they individually own the bandwidth resources and are
strategic in minimizing the cost of contributing resource and maximizing the benefit
of the received video quality. The system must provide a reward mechanism to keep
the resource-rich peers in the network.

In this taxation model, there must exist an asymmetry of roles, in which one user
has the power to enforce the centralized rules. For example, one way to ask peers
with higher capacity to contribute more is by taxing the users’ download bandwidth.
A tax schedule should be fixed and made public so peers can adjust their strategy
to maximize their utility between the scheduled tax seasons. The central authority
should not change the tax schedule, or if necessary, it should make the schedule
change only at a very large time scale to minimize system instability owing to peers’
reaction to the tax schedule change. The tax rate must to be fair in both horizontal
and vertical ways. Horizontal fairness requires that individuals with similar wealth
should bear similar tax liability. Similar to the tax rates in real world, vertical fairness
enforces that people with more wealth have a higher tax rate, which in return enforces
the super nodes to contribute more to the system. In such a scenario, there must
be a central authority to collect the tax payment from individuals according to a
predefined tax schedule. In P2P streaming, the video stream server is the natural
empowered entity, as the video server owns the content and can determine the ways
in which peers participate in the system via proprietary software. In other words, the
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video server has the freedom to design the rules, and the participating peers have
the freedom to choose either to follow the rules and enjoy the video or to walk away.

(2) Distributed methodology: The taxation scheme described here relies on a central
authority to control the tax schedule and enforce the payment. However, assuming
the existence of a central authority may not be desirable in a distributed P2P system.
Here we introduce a way to stimulate cooperation from resource-rich peers in a
distributed manner.

The basic idea is that peers earn points by sending video chunks to others and pay
points to receive chunks from others [93]. The time line is divided into fixed-length
periods. In each period, peers compete with one another for good supply peers for the
next period in a first-price auction procedure. In the first-price auction, requesting
peers send bidding points to the supply peer, and the one with the highest bid gets
the chunks at the price of his bid. When a peer fails in the competition for a certain
supply peer, it must choose a new supply peer either from other supply peers or the
winner of the bid, as the winner now can be considered as a suppler.

Peers who lose the bid can adopt two strategies to find the next supply peer: the
shortest-path strategy and the balanced-tree strategy. In the shortest-path scheme,
each requesting peer just looks for a supplier who has the shortest path. However,
the shortest-path criterion makes many requesting peers end up competing for the
same single well-located supply peer. As a result, the shortest-path scheme would
very probably make some peers overloaded and other peers upload nothing. Under
such a circumstance, the network resources will be severely wasted.

The balanced-tree strategy helps construct a short tree — that is, a small average
overlay path length for all peers. A short delivery path has important implications
for the system’s performance, because the transience of peers is the dominant factor
that affects the streaming stability in an overlay network, and a shortened delivery
path can effectively reduce the probability of streaming disruptions. Therefore, the
packet loss rate will be reduced, and the average utility of peers is increased.

In addition, the off-session points should be used to encourage peers who are no
longer in the media sessions to continue contributing to the network. In return, the
off-session peers earn points that can be used in later sessions to improve their media
quality. To maximize its own utility, the off-session peer will seek to maximize its
wealth instead of media quality, as it is not watching the video stream.

Incentives based on video quality
Because peers are heterogenous in terms of resources, scalable video coding is desirable
for P2P video streaming service to allow resource-rich peers to have better video quality.
With scalable coding, a video is coded into layers with nested dependency: the base layer
is necessary to decode the video at the lowest resolution and a higher layer gradually
refines the video quality. More received layers provide better video quality. Thus, one
way to provide incentives is to reward cooperative peers with higher video quality [94].
Each peer first measures its download rates from its neighbors by accumulating the
number of video chunks received from each neighbor over a certain time period. Then
each peer reciprocates by providing a larger fraction of its upload rate to neighbors from
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which it is downloading at higher rates. These peers would also have a higher probability
to be served if there are other competitors. In this scheme, each peer computes its
neighbors’ contributions in a distributed way. It avoids the centralized architecture and
enhances the scalability of the system. In this scheme, a peer with higher contribution
is more likely to obtain a larger share of its neighbors’ upload rates, and thus may
receive more layers and enjoy better video quality. On the other hand, a peer with a lower
upload contribution is more likely to receive fewer layers, thus receiving a lower, but still
acceptable, video quality. Such a scheme also gives no incentives to free-ride, because
a free rider with no contribution is very unlikely to be served by its neighbors.
Furthermore, a peer periodically replaces a neighbor that contributed the least with a
new peer to increase the system diversity and to maintain the service quality. To establish
astable relationship, it is desirable for a peer to build neighboring relationships with peers
who have similar upload bandwidth. Instead of just looking at the upload bandwidth that
can be falsely reported by neighbors, another approach is to locate a candidate neighbor
peer based on its buffer map [95]. Before establishing a neighboring relationship, two
peers exchange their buffer maps. Then they can evaluate whether the other peer has a
higher chance to have the video chunks that it may need in the future. Also, because a
peer that contributes more is supposed to receive more layers and vice versa, the upload
bandwidth contribution of the peer and its cooperative behavior can be evaluated based
on its buffer map. For example, a peer that is viewing more layers should be more
cooperative, which also implies that it should have more upload/download bandwidth.



Game theory for social networks

Game theory is the mathematical study of cooperation and conflict. It provides a distinct
and interdisciplinary approach to the study of human behavior and can be applied
to any situation in which the choice of each player influences other players’ utilities,
and in which players take this mutual influence into consideration in their decision-
making processes. Such strategic interaction is commonly used in the analysis of systems
involving human beings, such as economy, sociology, politics, and anthropology. Game
theory is a very powerful conceptual and procedural tool to investigate social interaction,
such as the rules of the game, the informational structure of the interactions, and the
payoffs associated with particular user decisions. Game theory can be applied to all
behavioral disciplines in a unified analytical framework. In the later chapters of this
book, game theory will be the main tool for modeling and analyzing human behavior in
media-sharing social networks. In this chapter we introduce the basic and most important
concepts of game theory that will be used extensively in this book.

The idea of game theory was first suggested by Emile Borel, who proposed a formal
theory of games in 1921. Later in 1944, the mathematician, John von Neumann and
the economist Oskar Morgenstern published Theory of Games and Economic Behavior,
which provided most of the basic noncooperative game terminologies and problem
setups that are still in use today, such as two-person zero-sum games. During the late
1940s, the developments of game theory focused on cooperative game theory, which
analyzes optimal strategies for groups of individuals under the assumption that they can
enforce collaboration among themselves to jointly improve their utilities. In 1950, the
concept of equilibrium was introduced by John Nash, who demonstrated that finite games
always have an equilibrium point, which is the best response of every player given all
other players’ choices. Ever since equilibrium was introduced, it has become the central
focus of noncooperative game theory. Refinement of Nash equilibriums and extension of
Nash equilibriums into Bayesian games, which consider incomplete information, were
proposed later in the 1960s.

The 1950s were the most gorgeous years of game theory, when many important
concepts were developed. Such concepts include the repeated games, game in extensive
forms, and coalitional games. Within the following few decades, game theory was broad-
ened theoretically and applied to problems of war, politics, economic theory, sociology,
and psychology. Later on, game theory even established relationships with evolution
and biology. Given the affluent applications in economy, a high-profile application of



42

4.1

Game theory for social networks

game theory was the design of auctions to allocate the resources more efficiently than
traditional governmental practices at the end of the 1990s.

Noncooperative and cooperative games

Game theory is a formal model of interactive situations. A game typically involves
more than one player, whereas a game with only one player is usually called a decision
problem. Here we define N to be the number of players in the game. Players in a game
make rational decisions by means of an abstract concept called utility. Utility of each
player refers to the self-judged scale of the subjective welfare or the change in subjective
welfare that this user derives from the outcome of the game, given the decision by all
users. The possible decisions each player can make are called the strategies of the player.
Different players can have different possible strategies and have different influences on
others’ or their own utility. Let player i s set of strategies be 4;; then user i’s utility can
be denoted as m;(A), where ; : 4 — R and A = X;cy4;. A strategic game with the
these parameters is usually denoted as (N, 4;, ;).

Based on whether players are able to form binding commitments, games can be divided
into two categories: cooperative and noncooperative games. Cooperative game theory
investigates the utilities that each potential group of players can obtain with respect
to the relative influencing power held by each player if the group members cooperate
with one another. Here, the basic assumption is that users are willing to cooperate with
one another if cooperation can help improve their utilities — for example, when there
is a binding contract that “enforces” cooperation. Cooperative game theory is most
frequently applied to situations in which the concept of relative strength of influence
is the most important factor in the game. For instance, the Nash bargaining solution is
for situations in which two parties bargain to retain some gains received from reaching
agreements and cooperating with each other, and the solution depends only on the
relative bargaining strengths of the two parties. The bargaining power is an implicit
concept, but it can usually be determined by the inefficient outcome that each individual
results in when negotiations break down.

Unlike cooperative games, noncooperative game theory focuses on the analysis of
strategic decisions of individual players. Players make decisions independently and no
enforcement of cooperation can be done by anyone other than the player himself or
herself. Noncooperative games are able to model situations to the finest details and
produce accurate results. Hence, noncooperative game modeling can help analyze the
decision of each user in the media sharing social network, whereas cooperative game
modeling focuses more on the outcome of the whole social network — or, the social
welfare.

In this chapter, we introduce the basic game theory concepts and tools that will
be used later in this book. We start with the noncooperative games and Nash equi-
librium, followed by the most commonly used cooperative game, the bargaining
theory.



4.2

4.2.1

4.2 Noncooperative games 43

Noncooperative games

Pure-strategy Nash equilibriums

Given any game, analysts are most interested in the outcome of the game. In nonco-
operative game theory, we have the luxury of getting into the details of each player’s
decision. Because all players are assumed to be rational, given other players’ choices,
they make choices that result in the utilities they prefer the most. Equilibrium is the
strategy outcome that is the best response of each user given the decision of others. The
first step of understanding equilibrium is the concept of dominance.

Under some circumstances, a player has two strategies, X and Y, such that given
any combination of strategies of all other players, the utility of this user resulting from
choosing strategy X is always better than the utility resulting from choosing strategy Y.
In such a case, strategy X dominates strategy Y. As a result, a rational player will never
choose to play the dominated strategy, which is strategy Y in this example. The strategy
Y is called a strictly dominated strategy for user i if there exists a strategy X such that

T[,'(X, a,,») > 7T,‘(Y, a,,»)Va,,», (41)

where a_; is the strategy profile chosen by all other players in the game, and 7; is the
utility function of user i. Examining strictly dominated strategies can help eliminate
strategies that a rational player will never choose and give precise advice to players on
how to play the game.

Although considering only dominated strategies can reduce the possible strategies that
a player will take, in many games, there are no dominated strategies. Nash equilibrium
can provide specific advice on how to play the game in general. The central concept of
Nash equilibrium is that it recommends a strategy to each player such that the player’s
utility cannot be increased given that the other players follow the recommendation of
Nash equilibrium. Given the fact that other players are also rational, it is reasonable
for each player to expect his or her opponents to follow the recommendation of Nash
equilibrium as well. In other words, Nash equilibrium defines the best-response strategy
of each player. The formal definition of Nash equilibrium is as follows:

Definition 4.1. The strategy profile a* € A is the Nash equilibrium of the strategic game
(N, A;, ;) if and only if for every a/,

mwi(al,a*;) > w(a;,a*;), Ya; €4, 4.2)
where a; denotes the strategy of user i, and a_; denotes the strategies of all other users.

The most famous example of Nash equilibrium is the prisoner’s dilemma. Suppose
there are two prisoners who committed the same crime and a district attorney is going to
question the prisoners. To induce the prisoners to talk, the attorney designs the following
incentive structure. If neither prisoner talks, both prisoners receive mild sentences, which
is quantified as payoff 3. If only one prisoner defects and squeals on the other, the
speaking prisoner is let off free and receives payoff 5, whereas the one who refuses to
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Table 4.1 Matrix form of prisoner’s dilemma

Cooperate Defect
Cooperate 3.,3) 0,5)
Defect (5,0) (1,1)

speak is subject to a severe sentence, equivalent to payoff 0. Finally, if both prisoners
speak about the crime, they share the punishment, which is a little better than the previous
case, and can be set as payoff being equal to 1. We can show the game between these
two prisoners as a matrix in Table 4.1.

In Table 4.1, the strategies of prisoner 1 and prisoner 2 serve as row and column labels,
respectively, and the corresponding payoffs are listed as pairs in matrix cells such that the
first number is the payoff of prisoner 1 and the second number is the payoff of prisoner 2.
“Defect” denotes the strategy of confessing to the attorney, and “Cooperate” refers to
cooperating with each other and keeping quiet. To search for the Nash equilibrium of
this game, we should look over the best response of each player (prisoner).

If player 1 plays “cooperate,” then the best response of player 2 is playing “defect,”
because “defect” yields a payoff of 5, whereas “Cooperate” yields only 3. If player 1 plays
“defect,” then player 2’s best response is again playing “defect,” because “defect” yields
a payoff of 1, whereas “cooperate” yields only 0. Therefore, regardless of the strategy
of player 1, a rational player 2 will always choose to play “defect”” By a symmetric
argument, a rational player 1 should also always play “defect.” As a result, the unique
Nash equilibrium of the game, assuming the players are rational, is (defect,defect).
This game is known as the prisoner’s dilemma because the only rational outcome is
(1,1), which is obviously suboptimal, as playing (cooperate,cooperate) yields payoff
(3,3) and benefits both prisoners. From this example, we can see that although the Nash
equilibrium is the best response of each player to other players’ decisions, it does not
always give the optimal payoff to all players. We will discuss how to push the Nash
equilibrium to the optimal outcome in Section 4.2.3.

Mixed-strategy equilibriums

A game in strategic form does not always have a pure-strategy Nash equilibrium, in
which each player deterministically chooses one strategy that gives the best response to
others’ strategies. Under such circumstances, players may tend to select randomly from
their pure strategies with certain probabilities to maximize their expected payoffs. Such
a randomized strategy is called a mixed strategy.

When mixed strategies are allowed, the Nash equilibrium defined for strategic games
in which players take pure strategies can be extended easily. As before, an equilibrium is
defined by a (possibly mixed) strategy for each player, in which no player can increase his
or her expected payoff by unilateral deviation. As proved by Osborne and Rubinstein [96],
any strategic game with finite strategy space has at least one mixed-strategy equilibrium.
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Table 4.2 Matrix form of the tennis game

Back receive Front receive
Back serve (0.4,0.6) (0.7,0.3)
Front serve (0.8,0.2) (0.1,0.9)

We use the following example to explain how to derive the mixed-strategy Nash
equilibrium of a game. In a tennis game, the server can serve to either the backhand
or forehand of the receiver. Given that the tennis ball travels fast and there is only a
very short time to make decisions, we assume that the server and the receiver make
decisions simultaneously. The receiver also anticipates that the ball will come to either
the forehand or backhand side. A receiver who anticipates correctly is more likely to
return the ball. In addition, the server has a stronger backhand serve, which makes the
receiver more difficult to return a backhand serve. As a result, the receiver will return a
correctly anticipated backhand serve with 60 percent probability and a correctly antici-
pated forehand serve with 90 percent probability. A receiver who wrongly anticipates a
forehand serve hits a good return 20 percent of the time, whereas a receiver who wrongly
anticipates a backhand serve hits a good return 30 percent of the time. Let the utility of
the receiver be the probability of returning the serve and the utility of the server be the
probability of the receiver misses the serve; the matrix form of the game can be shown
as in Table 4.2. The strategies of the receiver and the server serve as row and column
labels, respectively. The corresponding payoffs are listed as pairs in matrix cells such
that the first number is the payoff of the server and the second number is the payoff of
the receiver.

It is clear that there is no pure-strategy Nash equilibrium for this game: the best
response to “front serve” is “front receive,” whereas the best response to “front receive”
is “back serve.” Similar behavior shows in “back serve” as well; hence there is no pure-
strategy Nash equilibrium for this game. Instead, the players may look for the mixed-
strategy equilibrium. Assume that at the mixed-strategy equilibrium, the server plays
“back serve” with probability p, and the receiver plays “back receive” with probability
q- Then the utilities of the server ; and the receiver n, are

7, =pq*x04+p(1l—¢g)x0.74+ (1 —p)g*x08+(1—p)l—g)=0.1
and 7w, = pg*x0.6+p(1l—qg)*x03+(1—p)g=*x02+(1—p)(1—¢g)*09, (4.3)

respectively. According to the definition, at equilibrium, the server’s and receiver’s utility
should satisfy ad’; =0 and ‘Siq = 0. By solving the equations, we obtain p = 0.7 and
q = 0.6.

One may notice that at a mixed-strategy equilibrium, for each player, choosing either
strategy gives the same payoff. For example, given the fact that the receiver plays back
return with probability 0.6, the server receives payoff 0.48 for playing either back serve
or front serve. Such an interpretation is another way to calculate the mixed-strategy
equilibrium, which makes every strategy the best response to other players.
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Equilibrium refinement

If a game has more than one Nash equilibrium, a theory of strategic interaction should
guide players toward the most reasonable equilibrium on which they should focus.
Indeed, a large number of works in game theory have been concerned with equilib-
rium refinement, which attempts to derive conditions that make one equilibrium more
plausible or convincing than others.

The first question to ask is whether there exists an optimal equilibrium. Because game
theory is the tool to solve multiobjective optimization problems, it is not easy to define
optimality in most of the cases because the players may have conflicting objectives. The
most popular alternative of optimality is Pareto optimality, which is the payoff profile
that no player can increase his or her own payoff without making any other player worse
off.

Pareto optimality
Definition 4.2. The utility profile 7 is Pareto optimal if there does not exist another
utility profile 7’ such that 7/ > m; foralli € N.

If the utility profile is not Pareto optimal, then at least one user can increase his
or her payoff without degrading others’. As we assume all players are rational, there
is no reason for players to refuse to help a player to increase his or her payoff while
maintaining their own utilities. Therefore, a game with rational users will always go to
the equilibriums that are Pareto optimal. Utility profiles that are Pareto optimal form
the Pareto optimal set, which usually contains many elements. Hence, more specific
refinement of Nash equilibriums is needed to guide the players to desirable outcomes.
We introduce the subgame perfection and stability concepts to further refine the Nash
equilibriums.

Subgame perfection

Definition 4.3. A subgame is a subset of a game that contains an initial node that is the
only node in the information set and all nodes that are successors of any node it contains,
where an information set is the set of nodes that the player cannot differentiate.

In other words, subgames are the smaller games embedded in the original game.
Take the tennis game in Table 4.2 as an example. We first express the game into a tree
(extensive form) as in Figure 4.1.

Given the game in Figure 4.1, if the two players make decisions simultaneously,
then the only subgame of this game is the game itself. This is because node 1 (the
server’s move) is the only information set that contains only one node. Node 2 and node
3 (receiver’s move after back serve and front serve, respectively) belong to the same
information set, as the receiver does not know the server’s decision in advance. That is,
when the receiver makes a decision, he or she does not know whether the situation is
node 2 or node 3, so node 2 and node 3 are in the same information set.

However, the situation will change if the receiver actually makes a decision affer the
server — that is, when there is enough time for the receiver to observe whether it is a
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(0.4,0.6) (0.7,0.3) (0.8,0.2) (0.1,0.9)

Fig. 4.1 Extensive form of the tennis game

'Gerver>
back front

(0.4,0.6) (0.1,0.9)

Fig. 42 Remaining game of the tennis game after one iteration of backward induction

front or a back serve. As a result, node 2 and node 3 are in different information sets,
as the receiver knows where he or she is in the game tree. In such a scenario, the game
with initial node 2 or initial node 3 is a subgame of the tennis game. Also, this game has
perfect information, as every information set of the game contains only one node.

Definition 4.4. A Nash equilibrium is subgame-perfect if and only if it is a Nash equi-
librium in every subgame of the game.

The subgame-perfect Nash equilibrium of a finite-stage perfect-information game
can be found by backward induction. Backward induction first considers any node that
comes just before terminal nodes — that is, after each move stemming from this node, the
game ends. If the player who moves at this node acts rationally, he or she will choose the
best move for himself or herself. Hence, we select one of the moves that give this player
the highest payoff. Assigning the payoff vector associated with this move to the node at
hand, we delete all the moves stemming from this node so we have a shorter game, in
which our node is a terminal node. Repeat this procedure until we reach the origin.

Take the tennis game with perfect information in Figure 4.1 as an example. First,
find the equilibrium of the subgame, starting with node 2. There are two terminal nodes
in this game, and the player who makes the decision is the receiver, so apparently the
receiver will choose “back receive” to maximize the utility; hence, the utility profile
of the equilibrium is (0.4,0.6) in this subgame. The same analysis can be applied to
the subgame starting with node 3, in which the utility profile of the equilibrium is
(0.1,0.9). Because we have already examined all terminal nodes in the game, we finished
one iteration of the backward induction, and the remaining game is as in Figure 4.2.
Apparently there is only one subgame in Figure 4.2, which is the game itself. Now
the player who makes decision is the server, and to maximize the utility, the server
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will apparently choose the utility profile (0.4,0.6), which is the subgame-perfect Nash
equilibrium of the game.

Stable equilibrium

Although subgame perfection can refine Nash equilibriums, it usually needs perfect
information among players. However, players often have only limited information about
the other players’ strategies, or they are even unaware of the game being played. Under
such circumstances, subgame perfection is very difficult to meet. Also, what if some
players deviate from the equilibrium a little bit? Deviation is very likely to happen as a
result of lack of information. If deviation occurs, players may seek stable equilibriums
that push the outcome back to the stable equilibriums themselves after several rounds.

The evolutionarily stable strategy (ESS), inspired by biology mutations, guarantees
the stability of the outcome of the game. Different from traditional game theory that
emphasizes on the properties of strategy equilibrium, evolutionary game theory focuses
on the dynamics of strategy change. ESS provides guidance for a rational player to
approach the best strategy against a small number of players who deviate from the best
strategy, and thus achieve stability.

Take the prisoner’s dilemma in Table 4.1 as an example. Because evolutionary game
theory focuses on the behavior of populations, we assume that the game is played by a set
of homogeneous players, who have the same form of utility function 7; = 7 and action
space (“cooperate” and “defect”). To understand how a population of individuals who
repeatedly play the prisoner’s dilemma evolves, we assume that the population is quite
large. In such a case, we can represent the state of the population by simply keeping track
of what proportion follows the strategy “cooperate.” Let p. and p, denote the portions
of the population who play cooperate and defect, respectively. Furthermore, the average
payoffs of cooperators and defectors are denoted as 7. and m,, respectively, and the
average payoff of the entire population is denoted as 7. Then the payoffs can be written
as

e =pe*3+ pa*0,
Mg =pc*S5+ paxl,
and T = p.*x 7w, + pg * 4. (4.4)

The key concept of evolution is that the rate of portion change is proportional to the
payoff rate; that is,

Ope _ pelre =) g OPd _ PdTa = T) @.5)
ot e at b
From (4.4), m; > m., which results in both 7. — 7 < 0 and dp./d¢ < 0. Therefore,
we see that over time, the proportion of the population choosing the strategy “cooperate”
eventually becomes extinct, and “defect” is the only evolutionarily stable equilibrium.
We provide the formal definition of evolutionary stable equilibrium for a two-player
game as follows:
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Definition 4.5. Ina symmetric strategic game with two players ((1, 2), (A, A), (1, 72)),
an evolutionarily stable strategy is the action a* € A such that w;(a, a*) < m;(a*, a*)
and m;(a, a) < m;(a*, a) for every best response a # a* € A.

Equilibrium improvement

From the previous analysis, (defect,defect) is the only stable equilibrium of the prisoner’s
dilemma. However, apparently it is not the best strategy because (cooperate,cooperate)
gives higher utilities to both players. In the prisoner’s dilemma, equilibriums are ineffi-
cient. Remember that the prisoner’s dilemma game was designed by the attorney who
intended to make both prisoners confess and be punished for the crime. The question
is how to change the mechanism of the game so the outcome of the equilibrium can be
improved.

The players in the prisoner’s dilemma tend to play (defect,defect) because the game is
played only once and the players do not build a record of past interactions. What if the
game can be played multiple times and the players can learn from their past experience to
decide future actions? To model and analyze long-term interactions among players, the
repeated game model is used, in which the game is played for multiple rounds. A repeated
game is a special form of an extensive-form game, in which each stage is a repetition
of the same strategic-form game. The number of rounds may be finite or infinite, but
usually the infinite case is more interesting. The reason is that if the game is repeated for
finite times, by backward induction, in most cases the equilibriums will be the same as
that when the game is played only one time. With the infinitely repeated game, players
care about not only the current payoff but also the future payoffs, and a player’s current
behavior can affect the other players’ future behavior. Therefore, cooperation and mutual
trust among players, as well as new equilibriums, can be established.

The Folk theorem states that in infinitely repeated games, if all players’ min—max con-
ditions are satisfied in a strategy profile, such a strategy profile is a feasible equilibrium.
Here, the min—max condition means that a player will minimize the maximum possible
loss that he or she may face in the game. The Folk theorem tells us that in infinitely
repeated games, for any utility profile that gives a nonnegative payoff to every player,
there exists at least one equilibrium strategy to reach such a utility profile. Therefore,
instead of suffering from inefficient equilibriums, with infinitely repeated games, the
problem is to find the desired utility profile and design an interaction mechanism among
users to reach such a utility profile.

An example interaction mechanism is as follows. At the beginning of the game,
all players know the feasible payoff and try to choose the strategies that will lead to
such a desired utility profile. Then, if some players deviate from the desired payoff,
such a deviation triggers the the punishment stage, in which the deviating player will
be punished by other players such that any gains received by the deviator are at least
canceled out. Depending on the mechanism design, such punishment can be kept with
the deviator until the game terminates, or until several rounds have been played. In the
latter case, if the deviator behaves well later, the deviation behavior will be forgiven
and the punishment stopped after a certain period. Either way, there is no incentive
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for any player to deviate from the strategy that leads to the desired utility profile, and
the game will proceed with the suggested strategies that form an equilibrium. With
infinitely repeated games, the system designer is able to lead the game to any desired
outcome as long as the outcome is feasible and the interaction mechanism is carefully
designed.

Bargaining games

The bargaining game is one of the most interesting cooperative games, in which players
have the opportunity to negotiate with one another and reach a mutually beneficial
agreement on a division of interest among them. If they fail to reach agreements, the
potential benefit will be lost. For instance, both the employer and an employee can gain
from reaching an agreement as to more flexible working hours to increase the production
rate. Then the question is how the extra benefit that comes from greater flexibility of
working hours should be distributed between the laborer and the capital in the form of
higher wages or profits. The rearrangement would require an agreement as to how to
distribute the resulting burdens and benefits.

In this section, we begin by discussing the Nash axiomatic bargaining model followed
by a simple version of the strategic model developed by Rubinstein. We then generalize
the simple strategic model, and analyze the relationship in this general context between
the Nash and the Rubinstein solutions. Without loss of generality, we consider the
two-player bargaining game with N = {1, 2}. Multiplayer bargaining games can be
formulated by simply extending the two-player model. If the players fail to reach any
agreement, they receive the disagreement utilities 7r{ and 7}, respectively. The set of all
possible utility pairs is the compact and convex feasible set denoted by U. The bargained
result is denoted by 7* = (7, ;). The bargaining solution is a function that maps the
bargaining problem to a utility profile, which is f(U, 7°) = 7*.

Axiomatic bargaining model

The basic idea of the axiomatic model is to impose properties that a rational bargaining
solution should satisfy, and then look for solutions with these properties other than
specifying an explicit bargaining procedure. The axioms imposed on the bargaining
solution 7’ are as follows.

* Pareto efficiency: For any utility profile 7" € U, if there exists another utility profile
n* € U such that 7 > 7] fori = 1,2, then f(U, 7°) # 7'.

* Symmetry: If the bargaining problem is symmetry — that is, given (m;, 72) € U,
(a2, my) is also in U — then 7§ = 75’

* Independence of irrelevant alternatives: For any utility set U’ C U, if f(U',n°) e
U', then f(U', 7% = f(U, n°).
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* Invariance to equivalent utility representations: If we transform a bargaining problem
(U, 7% into (U’, n'°) bymaking U’ = aU + bandn’® = an® + b, then f(U’, n°) =
af(U, 7% +b.

It was shown by Nash that there exists a unique bargaining solution satisfying these
axioms [97], which is

f(U, 7% =arg ma&c(nl - n?)(nz — ng). (4.6)

The function (11 — 70)(7r, — 7Y) is called the Nash product, and the solution f is called
the Nash bargaining solution. When r¥ = 0 for all i € N, the Nash bargaining solution
is equivalent to the proportional fairness solution. In other words, the Nash bargaining
solution achieves some degree of fairness among cooperative players through bargaining.
Furthermore, if we drop the symmetry axiom, then there exists the generalized Nash
bargaining solution fy, which satisfies other three axioms and can be written as

Jo(U, ) = argmax(m, — () (my — 7)™, 4.7)

where 6 is the bargaining power of player 1. Clearly, the Nash bargaining solution is a
special case with & = 0.5. When 6 — 1, then f; maximizes player 1’s utility, and vice
versa.

Strategic bargaining model

The Nash bargaining model is timeless in the sense that it investigates only the bargained
outcome but not the bargaining procedure. Such a property has some advantages; for
example, it is very easy to apply the Nash bargaining model to scenarios without explicit
bargaining. However, there are circumstances in which the bargaining process is an
important issue. For instance, it would be useful to know how bargaining solutions are
influenced by the changes in the bargaining procedure to find a more robust bargaining
solution. Under such circumstances, studying explicit models of strategic bargaining
can provide guidance on these issues. Here we present the strategic bargaining model in
which the procedure is modeled explicitly as a game in real time.

We take an example that the sum of the utilities of the two players equals to 1 —that is,
71 + m, = 1—and the players want to bargain to reach the agreement of how to distribute
the utilities. Time proceeds without end as ¢ = 0, 1, 2, .. .; assume that an agreement ¢
gives ¢ to player 1 and 1 — g to player 2, where g € [0, 1]. The bargaining procedure
is as follows. At ¢ = 0, player 1 offers a value of ¢; that player 2 can either accept or
reject. If player 2 accepts, the solution ¢; is implemented and the game ends. If player 2
rejects, both players wait until the next time slot, # = 1, at which point player 2 makes
an offer ¢,, then player 1 decides to accept or reject, and so on. If ¢, is accepted at date #,
the payoff to player 1 is 8¢ and the payoff to player 2 is §5(1 — ¢), where 81, 8 € [0, 1]
are the discount factors of player 1 and player 2, respectively. If no agreement is ever
accepted by both players, both users’ payoffs are 0. A strategy for a player is generally
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a function that specifies the value of ¢, if it is his or her turn to make an offer, and an
element of {accept, reject} if it is his or her turn to respond.

The subgame perfect bargaining solution (rr{, ;) is the reservation values of the
players, such that in any subgame, player i will accept any offer that makes m; > 7.
To find the subgame perfect bargaining solution, first suppose that at # = 2, the lowest
payoff that player 1 would offer is g, = M then at t = 1, player 1 must accept the offer
that gives him or her a payoff larger than or equal to §; M, and player 2’s offer must be
atleast q; > 1 — §; M. Therefore, at ¢ = 0, player 2 would accept the offer if it is larger
than 8,(1 — §; M). As a result, the lowest payoff that player 1 would offer at # = 0 is
1 — 8,(1 — 81 M). Given the fact that the subgames starting from # = 0 and + = 2 are
exactly the same, M =1 —8,(1 —§M)and n{ = M =1 —616,/(81 + 62).

Now let us generalize the above bargaining model. First, instead of letting player 1
always make the offer first, now player i offers first with probability p;. Second, the
utility function of player i is a function of the offer ¢, which is m;(g). For example, in
the previous model, 7(q) = g and m2(g) = 1 — q. Also, let the length of time that each
bargaining stage takes be €, and the discount factor §; = 1/(1 + r;€), where r; is the
discount rate of player i.

The main result of the previous example, that there exists a unique subgame-perfect
equilibrium that can be characterized in terms of reservation values g, continues to
hold in this generalized model. It is easy to show that the reservation values satisfy the
following recursive relations [98]:

mi(gy) = (P1m1(q3) + pama(qy))

1+re

and m(g3) = (p12(g5) + pami(gy)). (4.8)

1+ re
Let ¢ = p1g} + p2q; be the averaged offer. Following Myerson’s analysis [98], we can
approximate (4.8) using the first-order Taylor series expansion with respect to ¢, and
calculate the weighted sum of these the two equations in (4.8) to cancel out the common
terms. Then, we can get

h
(1 +rOprm@m@) + (1 +raprm@m@= "2, 49)

where /4(¢€) includes all higher-order terms and /4(¢)/e — 0 when € — 0.
The generalized Nash bargaining problem in (4.7) can be characterized by the first-
order condition [98]:

0(ma(q) — ) ((q) + (1 — 0)(mi(q) — m{)mh(g) = 0. (4.10)

Comparing (4.10) with (4.9), we can see that when € — 0, the averaged payoff ¢ solves
the generalized Nash bargaining problem with 70 = 7y = 0 and with the bargaining
power

p
9 — pir

=, (4.11)
P12 + par
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which is a natural choice that reflects how resistant the two players’ utilities are against
time.

Hence, the Nash bargaining solution can be considered as an approximation to the
equilibrium outcome of the strategic bargaining game when the bargaining duration is
very small, which is equivalent to infinite repetitions of bargaining. The advantage of
using the strategic model, even if we are interested mainly in the case in which the
bargaining time of each round is short, is that it explicitly delivers the bargaining power
and indicates how they depend on features of the underlying game.
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Equal-risk fairness in colluder
social networks

As introduced in Chapter 2, multimedia fingerprinting systems involve many users with
different objectives, and users influence one another’s performance. To demonstrate how
to analyze human behavior, we take the equal-risk fairness collusion as an example.

During collusion, colluders contribute their fingerprinted copies and collectively gen-
erate the colluded copy. As demonstrated in Section 2.3.2, depending on the way attackers
collude, different colluders may have different probabilities to be detected by the dig-
ital rights enforcer. Each colluder prefers the collusion strategy that favors him or her
the most, and they must agree on risk distribution before collusion. A straightforward
solution is to let all colluders have the same probability of being detected, which we call
equal-risk fairness. Depending on the fingerprinting system and the multimedia content,
achieving equal-risk collusion may be complicated, especially when colluders receive
fingerprinted copies of different resolutions, as shown in Section 2.3.2. In this chapter,
we use equal-risk fairness as an example, analyze how colluders select the collusion
parameters to achieve fairness in scalable video fingerprinting systems, and provide a
simple example on behavior dynamics analysis and the investigation of the impact of
human factors on multimedia systems.

In this chapter, we investigate the ways in which colluders distribute the risk evenly
among themselves and achieve fairness of collusion when they receive copies of dif-
ferent resolutions as a result of network and device heterogeneity. We also analyze the
effectiveness of such fair collusion in defeating the fingerprinting systems. We then
analyze the impact of such colluders’ behavior on the fingerprint detector and study the
collusion resistance of the scalable fingerprinting system. We evaluate the maximum
number of colluders that the embedded fingerprints can withstand in various scenarios
with different requirements.

Equal-risk collusion

In this section, we consider the scalable multimedia fingerprinting system in Chapter 2
and use orthogonal fingerprint modulation, in which fingerprints assigned to different
users are orthogonal to each other. When colluders receive fingerprinted copies of differ-
ent resolution, they form a few subgroups, depending on the resolution of their received
copies, and use the two-stage collusion model. Colluders in the same subgroup collude
first and then average all the copies they have with the same weight. This intragroup
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collusion ensures that colluders in the same subgroup have the same probability of
being detected. Then, colluders in different subgroups apply the intergroup collusion
and select the collusion parameters {«;, 8;} to ensure that colluders in different sub-
groups also have the same risk. At the fingerprint detector’s side, we use the collective
fingerprint detector, by which fingerprints extracted from all layers are used collectively
to identify colluders. Given this model, we investigate how colluders select the collusion
parameters in the intergroup collusion to achieve equal-risk fairness.

Analysis of the detection statistics

To let all colluders have the same risk and achieve equal-risk fairness, colluders first
need to analyze the detection statistics and calculate each attacker’s probability of being
detected.

From Chapter 2, for each frame j; € F}, in the base layer, the extracted fingerprint Y;
is

Bi @) B2 W, B3 )
Y = Kb le + e Z le + Z le +d;,, (.1
iesch iesChel iescat

where K?, Kbl and K are the number of colluders who receive copies of low,
medium, and high resolution, respectively, and d;, = n; /JND,, is the detection noise.
If the colluded copy contains frames in the enhancement layers, for each frame j, € F,
in the enhancement layer 1,

__« 0 *2 @)
Y = Kbel Z W + Kall Z Wi, +d;. (5-2)
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where d;, =n;,/JND);, is the detection noise. If the colluded copy contains all three
layers, for each frame j; € F,; in the enhancement layer 2,

1 0
Y, = Kall Z Wi, +dj, (53)
ieScal

where d;; = n;,/JN D, is the detection noise.

With orthogonal fingerprint modulation as in Section 2.3.1, because the M origi-
nally embedded fingerprints are considered as known signals during fingerprint detec-
tion, under the assumption that colluders have reasonably good estimates of JND; and
{d;};er- are independent identically distributed (i.i.d.) Gaussian (O, o?), it follows
that given the colluder set SC, the detection statistics follow Gaussian distribution
p (TNDISC) ~ N (u?, 02) [60]. 1) = 0 when user i is innocent, and u® > 0 when
i is guilty. For a guilty colluder i € SC, 1) depends on the number of frames in the
colluded copy and the number frames that colluder i receives; we provide here a detailed
analysis of 1) when the colluded copy has different resolutions.
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When the colluded copy contains all three layers — that is, ¢ = Fj, U F,; U F,; —we

can show that

B (D12 . b

o\ 2 jero [TWS] ifi € SC7,
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Define N;, = Zjer Nj, Nei = Z.iEFel N;, and N, = ZjeFez N; as the lengths of
the fingerprints that are embedded in the base layer, enhancement layer 1, and enhance-
ment layer 2, respectively. With orthogonal ﬁngerprint modulation as discussed in
Section 2.3.1, we have Zher (’)||2 Ny - o2, Y jrer, IIW (’)||2 N, -2, and
D ek [IW (')||2 N - 02, where o2 is the variance of the watermark W®). There-
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When the colluded copy contains frames in the base layer and the enhancement
layer 1, that is, F© = F U F,|, similar to the preceding analysis,

bl g, ifi € SC?,
i) N, N, o
,LL(’) — K%ﬂhi\i;]\/lﬂ o, ifie Sva“, (5.6)
el o, ifi e SC.

When the colluded copy contains frames in the base layer only and F'¢ = F}, we have

b, ifi e SCP,

u =g, ifi e SCH, (5.7
BN, ifi e SC.
5.1.2 Selection of the collusion parameters

With the preceding analysis of the detection statistics, given a threshold £, for colluder u®
whose detection statistics follow distribution V' (1, 0.2), the probability that colluder
i is captured is

G
PO =P [TND = 4] = 0 (h“> , (5.8)

On
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12 . . . .
where Q(x) = fxoo \/% e~ 7 dt is the Gaussian tail function. Therefore, all colluders
share the same risk and are equally likely to be detected if and only if their detection
statistics have the same mean.

5.1.2.1 Highest-quality colluded copy
When the colluded copy contains frames in all three layers, from (5.5), colluders seek
{0 < Bk < 1}4=123 and {0 < oy < 1}, to satisfy

BivNo BNy + a1 Ney _ B3Ny + aaNet + Neo

Oy = Oy =
Kb Kbl /Ny + Ny Kal/Ny + Nei + Nea
subject to Bi+B+pBs=1, a1 +a,=1. 5.9

wo

Note that

Biv/Np Ba2Np + a1 Ny K"'/Ny + Nei 2Ny + a1 Ne)
oy = oy = = :
K? Kbl /N, + N, Kb/N, Bi1 Ny

(5.10)

In addition, let B3 = 1 — 8; — B and o, = 1 — a1, we have

/31va0 B3Ny +aaNey + Ne o K /Ny+ Net + Nz
Kb Y KAl /Ny+ No + Nz Kb /Ny
o Nh +Nel +Ne2 _1— /32Nb +a1Nel
BiNp BNy
Plugging (5.10) into (5.11), we have
Nj + Net + Ny K"/ Ny + Nei + Nez + KP' /Ny + Ney
B1Np Kb J/N
Therefore, from (5.10) and (5.12), to ensure equal risk, colluders should choose
_ Np+ Ney + Nep K’/Ny
B Ny Kb/Ny + K>V /Ny + Net + K/ Ny + Not + Neo”
(Nb + Net + Neg) K"' /Ny + Ny
Kb/Ny + KP'\/Ny + Net + K4 /Ny + Noy + Nez
(5.13)

(5.11)

+1.  (5.12)

B

and ByNp + o N, =

From Section 2.3.2, the collusion parameters are required to be in the range of [0, 1].

From (5.13), 0 < B; < 1l if and only if
Kb«/Nb - Ny
KNy + K2V /Ny + Noy + K4 /Ny + Ny + Nog ~ Np+ Net + Nea’
Furthermore, from (5.13),
o = Mot Net+ Neo K"V /Ny + Nei
1 Neo  KP/Np + KPe /Ny + Net + KU/ Ny + Net + Neo
Np
a 132 Nel ’

(5.14)

(5.15)
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Given 8y asin(5.13),0 < 8, < 1 — B;. Consequently, from (5.15), wehavea < o) < @,

where

oo Mot N+ Neo K"/Ny + KP*' /Ny + Nei

. Nei KP/Ny + KP'/Ny + Net + K9/ Ny + Net + Nez
N,

— —h, and

N1

— Np + Nei + Ne K" /Ny + N1

B Nei Kb/Ny + K>'\/Ny + Net + K9 /Ny + Ney + Nez

(5.16)

If [0, 1] N [e, @] is not empty, then there exists at least one o] such that 0 < af <1
and o < o} <. Note that > 0, so [0, 1] N [e, @] # @ if and only if & < 1, which is
equivalent to

K /Ny + Net + Nea - Ne,
K'/Ny + K0V /Ny + Noy + K4 /Ny + Nt + Nea ~ Np+ Net + Neo’

(5.17)

To summarize, to generate a colluded copy with the highest temporal resolution under
the equal-risk fairness constraints, (K b gbel gall ) and (N, N1, Ng») must satisfy
(5.14) and (5.17), and colluders should choose the collusion parameters as in (5.13).

5.1.2.2 Medium-quality colluded copy

In this scenario, the colluded copy has medium resolution and contains frames in the
base layer and enhancement layer 1. For colluder i; € SC* and colluder i, € SC>¢!
who receive copies of the highest and the medium resolution, respectively, the overall
lengths of their fingerprints in the colluded copy are the same and equal to N, + N.;.
In this scenario, during the intergroup collusion shown in Figure 2.4, colluder i and i,
let a;/K?¢' = oy /K and B,/ K€" = B3/K*. Such a parameter selection not only
guarantees 1) = 12, but also ensures that for each frame ; in the colluded copy, the
energies of these two colluders’ fingerprints Wy‘) and WyZ) are reduced by the same
ratio. For a given 0 < 8, < 1, it is equivalent to

Kb,el
a1 =Kb,el+Kall’ 06221—061,
Kb,el
,32=W(1—,31), and B3 =1—p1—p. (5.18)
With the previously selected parameters,
. . 1 — B1)Ny + N,
(i) — ) _ ( Vb 5. 5.19
® ® (Kbel + Kl /N, F Noy " (5.19)
Colluders seek 0 < ; < 1 such that
/N 1 — BNy + N,
BivNo (1= BNy + Ney (5.20)

Oy = Oy,
Kb (Kb,el +Kall)m
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and the solution is

gy = Ny + N Kys/Ny (521)
T TN KON (KP4 KN, § N '
With 8y asin (5.21),0 < B; < 1 if and only if
K’/N N,
b b (5.22)

< .
KP\/Ns + (K> + K /N, + Nt~ Np+ N

Given 0 < B; < 1, from (5.18), it is straightforward to show that 0 < S,, B3, a1, oy < 1.
To summarize, to achieve equal-risk fairness, (K*, K”!, K“') and (Nj, Ne1, Ne2)

must satisfy (5.22) if colluders wish to generate a colluded copy of medium temporal

resolution. Colluders should choose the collusion parameters as in (5.18) and (5.21).

Lowest-quality colluded copy
When the colluded copy contains frames in the base layer only, colluders choose {0 <
Br < 1}i=1.23 With B; + B, + B3 = 1 to satisfy

BIvNy BNy BNy

zP oy = Kbl oy = all Ow, (5.23)
and the solution is
Kb Kb,el
P = Kb + Kbel 4 gall’ P = Kb + Kbel 4 gall’
Kall
and B3 = (5.24)

Kb + Kb.el + Kall'

In this scenario, there are no constraints on (Kb, Kbl K“”) and (Np, Ne1, N,»), and
colluders can always generate a colluded copy containing frames in the base layer only.

Summary of parameter selection to achieve fairness during collusion

Table 5.1 summarizes the constraints and the parameter selection during collusion to
ensure equal-risk fairness in three scenarios, in which the colluded copy has the highest,
medium, and lowest temporal resolutions, respectively. From Table 5.1, if colluders
want to generate a colluded copy of higher resolution, the constraints are more severe to
distribute the risk of being detected evenly among all attackers.

To select the collusion parameters, colluders need to estimate Ny: N, :N,;, the ratio of
the lengths of the fingerprints embedded in different layers. Because adjacent frames in
a video sequence are similar to each other and have approximately the same number of
embeddable coefficients, colluders can use the following approximation N : N, : Ny ~
|Fpl i Ferl | Feal.
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Table 5.1 Constraints and selection of collusion parameters during collusion to achieve fairness

FC=F,UF, UF, Fairness constraints:
(highest resolution) Kb /Ny < Ny
Kb o/ Np+ KDl /Nyt Ney +K U /Ny +Nej+Ney — NoHNet+Nea?
KU/ Np+Ne1 +Ney Ny

> .
KD o/ Nyt KD [Ny Nt + KU Ny + Nt Ny — Mot Ner+Nez

Parameter selection:

b
,81 — Np+Ne1+Neo2 K°\/Np
No o KONyt KO Nyt Net+K Ny 4 Net +Nea
(Np+Ne1+Ne) K21 \/Np+Nei
B2Np + a1 N,y

T KONy KD Nyt Ny K Nyt Net +Ne2 |

Bi=1—=B1—pBr, acx=1—0ay.

Fe=F,UF, Fairness constraints:
(medium resolution) Kb /Ny Ny

< .
Kb /Nb+(Kb'el+Ka”)\/Nb+Nel — Np+Ngp

Parameter selection:

B = Np+Ng1 K/ Np
Np Khm+(KIJ.el+Kall)\/Nb+Nel’
Khel
B = Khelygall (=8B, Bs=1—p1—pa,
kbl .
O = phetygars %2 = 1 —a.
F¢ = Fy (lowest Fairness constraints:
resolution) No constraints on (K?, K>¢', K*') and (N, N,1, Ney).

Parameter selection:

Kb Khel Kall
B = KbxKbelfgall » B= KbKbelyKal » B = KPrKbeTyKal *

Influence on the detector’s side: collusion resistance

In this section, we analyze the impact of equal-risk fair collusion on multimedia finger-
printing. We study the effectiveness of collusion attacks and examine the traitor-tracing
performance of scalable fingerprinting systems when colluders follow Table 5.1 to select
the collusion parameters.

Statistical analysis on traitor-tracing capacity

Assume that there are a total of M users. From the analysis in the previous section, if
colluders select the collusion parameters as in Table 5.1, then given a colluder set SC,
for each user i,

N(M, Gf) ifi € SC,
N (0. 02) ifi ¢ SC.

TND ~ (5.25)
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where a is the variance of the detection noise d;, and the M detection statistics
(TN (’)},=1,... v are independent of each other because of the orthogonality of the fin-
gerprints. In addition, for i € SC,

Biv/ Np
= O’w
Kb
Np+Nei +Ne : c _
KON, Kb Nl;,+Ntl|+K“2” NiENLG TN, OV if F¢=Fy U F, U Fe,
— Np+N, : c __
- Khm-F(Kb‘l’)]-‘rK‘l’”) N};+N51 itFe = Fb U Fel’
VN, e
WUW if F¢ = F (5.26)
Note that
Nb+Nel _ VNb+Nel
KP /Nb 4 (Kb,el 4 Kall) /Ny + No Kb /Nb+N 4 Kbel 4 gall
- b Y Nb + Nel
- Kb + Kb,el + Kall
VN,
> b . (5.27)
Kb + Kb.el + Kall
Similarly, we can also show that
Nb + Nel + Ne2
KON, + KP4 /N, T Noy + KN, F Noy T Nas
N, N,
b+ Nei (528)

> .
= KON, + (K2 + K /Ny + Ny
Therefore, under the equal-risk fairness constraints, p in (5.26) is larger when the

colluded copy has higher resolution.
Given a threshold /4, from (5.25), we can have
h—nun K
< On )] 7
n\ MK
o(z)]
On

E[Fj]=) P N(")>h]/K=Q<h_'u),

=Ne n

P;=P {maxTN(i)>h] =1- [ 0
ieSC

1 —
P;, =P {maxTN(i) > h] =1- [1 -
: i¢SC

and E[Fg] =Y P[TND>h]/(M—-K)=Q (h
i¢SC "

) . (5.29)

From (5.26) and (5.29), the effectiveness of equal-risk collusion in defeating the
scalable fingerprinting systems depends on the total number of colluders K as well
as the temporal resolution of the colluded copy. For a fixed resolution of the colluded
copy, when there are more colluders in the systems, they are less likely to be captured



5.2.2

5.2 Influence on the detector’s side: collusion resistance 65

and the collusion attack is more effective. For a fixed total number of colluders K,
when the colluded copy has a higher resolution, the extracted fingerprint is longer and
provides more information on colluders’ identities to the detector. Therefore, colluders
have a larger probability of being detected. During collusion, colluders must take into
consideration the tradeoff between the risk of being detected and the resolution of the
colluded copy.

Simulation results with ideal gaussian models

When simulating the scalable fingerprinting systems and collusion attacks using ideal
Gaussian models, we test a total of forty frames as an example. We consider a temporally
scalable coding system in which frames Fp = {1, 5, ..., 37} are encoded in the base
layer, frames F,; = {3, 7, ..., 39} are in enhancement layer 1, and enhancement layer 2
consists of frames F,, = {2, 4, ..., 40}. User i; € U receives the base layer only and
reconstructs a fingerprinted copy of ten frames, including frame 1, 5, . . ., and frame 37.
Foruseri, € UP¢! who receives the base layer and enhancement layer 1, the fingerprinted
copy includes all twenty odd-numbered frames. User i3 € U/ subscribes to all three
layers and receives a fingerprinted copy of all forty frames.

From human visual models [58], not all coefficients are embeddable because of
imperceptibility constraints. For real video sequences such as “akiyo” and “carphone,”
the number of embeddable coefficients in each frame varies from 3000 to 7000, depend-
ing on the characteristics of the video sequences. In our simulations, we assume that the
length of the fingerprints embedded in each frame is 5000, and the lengths of the finger-
prints embedded in the base layer, enhancement layer 1, and enhancement layer 2 are
Np = 50000, N, = 50000, and N, = 100000, respectively. We assume that there are
a total of M = 450 users and [U?| = |U>¢!| = |U%| = 150. We first generate indepen-
dent vectors following Gaussian distribution N(0, 02) with 02 = 1/9, and then apply
Gram—Schmidt orthogonalization to produce fingerprints that satisfy (2.1). In each fin-
gerprinted copy, fingerprints embedded in adjacent frames are correlated with each other.

We assume that 0 < K?, K?¢!, K% < 150 are the number of colluders in subgroups
SCt, SChe!, and SC*, respectively. During collusion, colluders apply the intragroup
collusion followed by the intergroup collusion, as in Figure 2.4. Furthermore, we assume
that the detection noise follows Gaussian distribution, with zero mean and variance
an = 203).

In Figure 5.1, we fix the ratio K?:K»¢:K%" = 1:1:1, and assume that the col-
luded copy has medium resolution and includes all twenty odd-numbered frames. In
Figure 5.1(a), we select the threshold % to fix the probability of accusing at least one
innocent user as 10~* and plot the probability of capturing at least one colluder P,
when the total number of colluders K increases. In Figure 5.1(b), E[F,] = 1073 and
we plot the expected fraction of colluders that are captured when K increases. From
Figure 5.1, the collusion is more effective in removing traces of the fingerprints when
there are more colluders.

We then fix the total number of colluders K = 150, and compare the effectiveness of
the collusion attacks when the temporal resolution of the colluded copy changes. Define



66 Equal-risk fairness in colluder social networks

08 \\ . ]
0.7+ \‘ : 1
06 ) : :
05 1
0.4+ ]
03} * 1

02F

01 L L L L L L L
20 40 60 80 100 120 140 160 180

Number of colluders
(a) Py

09} ]
0.8} Y ]

07t \ ]

EIF,]

0.5 ' 1

0.4} ]

0.1 e 1

0 1 1 1 1
20 40 60 80 100 120 140 160 180
Number of colluders

(b) E(Fq)

Fig. 5.1 Effectiveness of equal-risk collusion attacks on scalable fingerprinting systems.
Kb:Kbel: K = 1:1:1

the lines AB and CD as

AB £ {(KP KM K - K/,
Kb /Ny + K>\ /Ny + Nei + K9/Ny + Net + Nea

0= K" < U0 = K< UP 0 < K < U,

- Np + Net + Nep
K'+ K"+ K=K}, and (5.30)
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all
A b phel pall K" V' Np + Net + Nea
CD =1(K”, K" K :
{( ) KP/Ny + KV /Ny + Ny + K“/Ny + Net + Nea

=2 <K'= U0 K2 < UP 0 < K < U,
Np + Net + Nez
K'+ K"+ K" =K}, (5.31)

respectively, as shown in Figure 5.2(a). Line 4B and line CD are the boundaries of
the two constraints to achieve fairness, respectively, when generating an attacked copy
of the highest resolution. For a fixed K = 150, we study the effectiveness of collu-
sion when (K b gbel gal ) takes different values on line 4B and line C D, respec-
tively. In our simulations, we assume that colluders generate a colluded copy of the
highest possible resolution under the constraints in Table 5.1. Figure 5.2(b) plots the
regions in which colluders can generate a colluded copy of high resolution and regions
where colluders can generate a medium resolution copy under the fairness constraints in
Table 5.1.

Figures 5.3 and 5.4 show the simulation results when K = 150 is fixed and
(K?, Kbl K4') takes different values on line AB (5.30). In Figures 5.3 and 5.4, a
given value of K/ corresponds to a unique point on line 4B, and therefore, a unique
triplet (K*, K»!, K“I"). Figure 5.3(a) shows the number of frames in the colluded copy
L¢ = |F€|. L¢ = 20 when the attacked copy has medium resolution and L¢ = 40 when
attackers generate a copy including all three layers. Figure 5.3(b) shows the means of
the detection statistics of the guilty colluders. In Figure 5.4(a), we select the threshold
used to fix Py, = 107 and we compare P; of the collusion attacks when the triplet
(K, K¢, K" takes different values on line 4B. In Figure 5.4(b), E[F/,] = 107
by selecting the threshold in the simulation runs and we compare E[Fy;] of the fair
collusion for different triplets (K*, K*!, K“') on line 4B.

Similarly, Figures 5.5 and 5.6 show the simulation results when K is fixed as 150 and
(K?, K><', K") moves on line CD (5.31). In these two figures, each K represents one
point on line C D and a unique (K”, Kbl K“”) . Figure 5.5(a) plots the total number of
frames in the colluded copy. L¢ = 10, L¢ = 20, and L¢ = 40 correspond to the scenarios
in which the colluded copy has low, medium, and high resolution, respectively. Figure
5.5(b) shows the mean of the guilty colluders’ detection statistics. In Figure 5.6(a), Py, is
fixedas 10~ and we compare P; when (K*, K”*!, K%'} moves from left to right on line
CD. Figure 5.6(b) fixes E[F,] = 1073 and plots E[F,] for different (K?, K¢, K4!')
on Line CD.

From Figures 5.3 to 5.6, we see that when the colluded copy has higher temporal
resolution, the attacked copy contains more information on the attackers’ fingerprints,
and colluders have a larger probability to be captured. This is in agreement with our
statistical analysis in Section 5.2.1. Colluders must consider the tradeoff between the
probability of being detected and the resolution of the attacked copy during collusion.

From the preceding figures, if we fix the total number of colluders K and the resolution
of the colluded copy L¢ = |F¢|, P; and E[F,] have larger values when K is smaller (or
equivalently, when K“ is larger). This is because, with fixed K = K? 4+ Kb 4 K/
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Fig. 5.2 An example of (a) line AB of (5.30) and line CD of (5.31), and (b) regions in which
colluders can generate a medium-resolution or a high-resolution copy while still ensuring
equal-risk fairness. K = 150

and fixed F¢ = Fp U F,, from (5.26),
Np + Ney
K= Ko JN, + (Kbl + Ky Ny F Ny ©
Ny + N,
Koy Ny + (K — KO)JN; 7 Not "
Np + Nt
= Nt Mot + KON — N ¥ Nen)

(5.32)



5.2.3

5.2 Influence on the detector’s side: collusion resistance 69

40 "
38| :
36 1

34+ g

|F

30+t 1
28t ]

26 | ]

22 ! ]

20 N 1 1 1 1 ‘ 1 1 1
0 10 20 30 40 50 60 70 80 90

Kall
(a) |F¢|: number of frames in the colluded copy

38| R
361 |
341 |

32} |

281 i
26| ]

24+ . B

22 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Kall
b) p: mean of the detection statistics
(b) n

Fig. 5.3 Fair collusion when (K%, K%', K"} takes different values on line AB (5.30). K = 150

is an increasing function of K°. Therefore, 1 takes larger values when K? increases,
and the equal-risk collusion attacks are less effective. The analysis is similar with fixed
F¢=F,UF, UF, and fixed K.

Simulation results on video sequences

In our simulations on real videos, we test the first forty frames of sequence
“carphone” as an example. We choose F;, = {1, 5,...,37}, F,; ={3,7,...,39}, and
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Fig. 5.4 Effectiveness of fair collusion when (K?, K?¢', K"} takes different values on line AB
(5.30). K = 150

F, =1{2,4,...,40} as an example of the temporal scalability. Assume that there are a
total of M = 450 users and |U?| = |U>¢!| = |U%!| = 150. We adopt the human visual
model-based spread spectrum embedding presented by Podilchuk and Zeng [58], and
embed the fingerprints in the discrete cosine transform (DCT) domain. The lengths of the
embedded fingerprints in the base layer, enhancement layer 1, and enhancement layer 2
are Np = 39988, N.; = 39934, and N,, = 79686, respectively. We first generate inde-
pendent vectors following Gaussian distribution N (0, 1/9) and apply Gram—Schmidt
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line CD (5.31). K =150

orthogonalization to produce fingerprints satisfying the strict orthogonality and equal
energy requirements in (2.1). In each fingerprinted copy, the fingerprints embedded in
different frames are correlated with one another, depending on the similarity between
the host frames.

During collusion, we fix the total number of colluders as K = 150 and assume that
the collusion attack is also in the DCT domain. In our simulations, colluders apply the
intragroup collusion attacks followed by the intergroup attacks, as in Section 2.3.2. We
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adjust the power of the additive noise such that [|n;||*/||JND jW?)II2 =2 for every
frame j € F€ inthe colluded copy. In our simulations, we assume that colluders generate
acolluded copy of the highest possible resolution under the equal-risk fairness constraint.

At the detector’s side, we consider a nonblind detection scenario in which the host
signal is removed from the colluded copy before the colluder identification process. The
detector follows the detection process in Section 2.3.3 and estimates the indices of the
colluders SC.



5.2 Influence on the detector’s side: collusion resistance 73

/

¥
|
"

08 f | ]
07} ]
06 | , ]
05} I 4
04 | , ]
03t / 1

0'2%——*—*4'*-—%7—*;* 1

019040 20 30 40 50 60 70 80 90

Kall
(a) Py

0.3

0.25 ! ~ 1

E[F,]

015 / ]

01} / .

0_0599**%**\***?**‘\“*?* L L L
0 10 20 30 40 50 60 70 80 90
Ka/l

(b) E(Fa)

Fig. 5.7 Simulation results on sequence “carphone.” (K?, K¢, K*") are on line 4B (5.30)

Figure 5.7 and 5.8 show the simulation results. In Figure 5.7, the x axis is the number
of colluders who receive all three layers K, and each value of K“/ represents a
unique triplet (K?, K%', Ky on line AB (5.30). In Figure 5.8, the x axis is the
number of colluders who receive the base layer only, and a given K” corresponds to
a triplet (K?, K?¢', K"y on line CD (5.31). In Figures 5.7(a) and 5.8(a), we select
the threshold to fix P/, = 1073 and compare P, when (K?, K>¢!, K takes different
values. In Figures 5.7(b) and 5.8(b), E[F,] is fixed as 1073, and we compare E[F,;] of
the collusion attacks with different (K b gbel gall ).
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Fig. 5.8 Simulation results on sequence “carphone.” (K?, K¢, K") are on line CD (5.31)

From Figures 5.7 and 5.8, we see that the effectiveness of collusion in defeating the
scalable fingerprinting systems depends on the resolution of the colluded copy. When the
colluded copy has higher resolution, the extracted fingerprint gives the detector more
information about the colluders’ identities, and attackers take a greater risk of being
detected. The simulation results on real videos agree with our analytical results and are
comparable with the simulation results in Section 5.2.2.
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Traitor-tracing capability of scalable fingerprints

In this section, we quantify the traitor-tracing capacity of scalable fingerprinting sys-
tems under the equal-risk collusion attack, and examine K, ., the maximum number of
colluders that the fingerprinting system can successfully resist under the system require-
ments. As done by Wang ef al. [61], we consider three different scenarios with different
collusion resistance requirements, and analyze the tracing-tracing capability one by one.

Catch-one

In the catch-one scenario, the fingerprinting systems wish to maximize the chance to
capture one colluder while minimizing the probability of falsely accusing an innocent
user. An example of such a scenario is to provide trustworthy digital evidence in a court
of law. The performance criteria in this scenario are the probability of capturing at least
one colluder P; and the probability of accusing at least one innocent user Py,. From
the detector’s point of view, the detector fails if either it does not capture any of the
colluders or it falsely accuses an innocent user as a colluder. Consequently, the system
requirements are

Pizvya and Pp, <y (5.33)

Upper and lower bounds of K,

To quantify the collusion resistance of the scalable fingerprinting system in Section 2.3
and analyze K., we first need to analyze P; and Pj,. From (5.26) and (5.29), if we fix
the probability of accusing at least one innocent user Py, = v, given the system param-
eters (|U?|, [UP¢'|, [U"|) and (Nj, N.1, N.»), the performance of the detector in Section
2.3.3 depends on the number of colluders in different subgroups (K?, K>¢', K*!) and
the temporal resolution of the colluded copy L¢. For a fixed total number of colluders
K, we define

A
PY(K)= max Py,
d
Lc,(Kh,KbAel ,Kall)

st KP4+ K K=K, 0< K < U,

0 < kPl < [ubel), 0 < K < U,

and the fairness constraints in Table 5.1 are satisfied; (5.34)
and PL(K)=2 Lc,(](hr,rlggl,l(a”)Pd’
st KP4 KP4 k=K, 0 < Kb < U,

0 < Kbl < [ubel), 0 < K < [uel),

and the fairness constraints in Table 5.1 are satisfied. (5.35)
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P, reaches the upper bound PY (k) when colluders generate a colluded copy of the
highest resolution, whereas P; equals to PX(K) when the colluded copy contains the
base layer only. Figure 5.9(a) shows an example of PY(K) and P}(K) when there are
a total of M = 450 users and yy, = 1073, In Figure 5.9, |U?|:|U>¢!|:|U“| = 1:1:1 and
(Np, N1, Neo) = (50000, 50000, 100000). From Figure 5.9(a), the fingerprinting sys-
tem’s performance degrades when K becomes larger. Under the requirements P; > 0.8
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and Py, < 1073, we can see from Figure 5.9(a) that when the total number of colluders
is larger than 210, PY(K) < 0.8 and the fingerprinting systems will always fail no mat-
ter which resolution the colluded copy has. When there are fewer than sixty attackers,
PL(k) > 0.8 and colluders can never bypass the detector without being detected, even
if they generate only a colluded copy of low resolution.

In the catch-one scenario, given the system parameters (|U?|, [U?¢!|, |[U%/|) and the
total number of users M, we further define

U
Kmax

arng?X{PdU(K) > va},

and KE 2 arg mI?x{PdL(K) > Yl (5.36)
Given the parameters (|U?|, [U”¢!|, |U%""|) and (Np, Ne1, N.,), when the total number of
colluders K is smaller than K, no matter what values L€ and (K?, K%¢!, K4') take,
the system requirements of (5.33) are always satisfied. On the contrary, if the total number
of colluders K is larger than KUY , for all possible values of L¢ and (K, K>¢!, K4!l),
the detector will always fail under the system requirements. Therefore, KU, and KL
provide the upper and lower bounds of K,,,,, respectively.

From the colluders’ point of view, if they can collect no more than K
pendent copies, no matter how they collude, the collusion attack will always fail.
However, if they manage to collect more than KUY  copies, they can be guaranteed
success even if they generate a colluded copy of the highest resolution. From the con-

L

may Inde-

tent owner’s point of view, if he or she can ensure that potential colluders cannot
collect more than K independent copies, the fingerprinting system is essentially
collusion-resistant.

Figure 5.9(b) shows KY, and K% as functions of the total number of users M under
the system requirements y;,, = 107> and y; = 0.8. In Figure 5.9(b), [U?|:[U>¢!|:| U« | =
1:1:1 and (N, N1, Ngz) = (50000, 50000, 100000). As shown in Figure 5.9(b), with
thousands of users, the fingerprinting system can withstand 50 colluders if the colluded
copy has low resolution, and it can resist attacks with up to 150 colluders if the colluded
copy has high resolution. Furthermore, if the content owner distributes no more than
100 copies, the detection performance will always satisfy the requirement (5.33) even
if all users participate in collusion. Consequently, the fingerprinting system is also
collusion-secure if M < 100.

In Figure 5.9(b), K, first increases and then decreases, as the total number of users
M increases. The intuitive explanation of this behavior is the same as that given by Wang
et al. [61]. When the total number of users is small (e.g., M < 20), even if all users
participate in collusion, the fingerprinting system can still successfully capture them
with P; = 1, as shown in Figure 5.9(a). Therefore, when M is small, K,,,, = M and it
increases as M increases. When M continues to increase, owing to the energy reduction
of the embedded fingerprints during collusion, P; starts to drop when there are more
colluders, and it is more likely to make errors when identifying colluders: it either fails
to detect any colluders or falsely accuses innocents. Thus, K,,,, drops as M increases
when the total number of users is sufficiently large.
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Calculation of KU and K-

To calculate KU, and KL, weneed to first find PY(K) and P} (K). From the analysis

in Section 5.2.1, the detector has the worst performance when the colluded copy contains
frames in the base layer only and F'¢ = F},. In this scenario, for a guilty colluderi € SC,
the mean of his or her detection statistics is i = +/Nj - 0,,/ K, where N, is the length
of the fingerprints embedded in the base layer and o2 is the variance of the fingerprint.

Therefore, from (5.29), for a given K, the lower bound of Py is

h_m'aw/K>:|K

On

PHK)=1- {1 -0 ( (5.37)
where o2 is the variance of the detection noise and the detection threshold /4 is chosen
to satisfy Pr, = yp.

To calculate the upper bound of Py, given (N, N1, N,») and K, we define

KN
RC3 A {(Kb7Kb,el’Kall) . b
K>/Ny + K2¢'\/Ny + Noi + K4/Ny + Nei + Ney
- Ny K /Ny + Nei + N
T Ny + N + Noo” KP/N, + K0V /N, + Ny + K4 /Ny + Noj + Ny
> Ne2 ,OS Kb < |Ub|,0§Kb’81 < |Ua”|,0§ Kall < |Uall|,
Np + Nei + Nep
Kb +Kb,€1 + Kall — K,} and (538)
K"/N,
RC2 A {(Kb7Kb,e1’ Kall) . b

KD Ns + (K + KNy + Nox

<M o< KD <UL 0 < kP < Ut 0 < K < U,
Nb + Nel
K'+ K"+ Kk =K.} (5.39)

From Section 5.2.1, for a given K, P; is maximized when the colluded copy has
the highest possible temporal resolution under the equal-risk fairness constraint. If
RC? + @, then there exists at least one triplet (K?, K¢!, K) that satisfies the fairness
constraint in Table 5.1 for generating an attacked copy of the highest resolution with
F¢ = F, U F,; U F,,. Therefore,

PJ(K) = max Py,
F”:FhUF}]UFdAV(K}’,K”‘EI s Kall)

suchthat K’ +K"'+ Kk =K, 0 <K? < U,
0 < Kb,el < |Ub,el|’ 0 < Kall < |Uall|’

K /N, - Ny
K /Ny + K2V /Ny + N + K9/ Ny + Net + Nog ~ Np+ Net + Neo
Ka” Nb+Nel +Ne2 Ne2

> . (540
KONy + K1 /Ny T N + KOy T N T N = Nyt N+ N 1)
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From (5.29), maximizing P; when F° = F, U F,; U F,, is equivalent to maximizing
the corresponding mean of the detection statistics
_ Np + Nei + Nea
N7 KON A KPYN, ¥ Noy + KNy Na Ny

It is also equivalent to minimizing the denominator of w, which is ¥(K) 2 kb v Ny +
Kb /Ny + Noi + K /N, + N1 + N,». Consequently, the optimization problem of
(5.40) can be simplified to

LK) 2 min K°\/Np + K2/ Ny + Not + K /Ny + Not + Nea

(Kh’KhAcl ,K””)

(5.41)

(5.42)

with the same constraints as in (5.40). We can use linear programming [99] to solve the
optimization problem of (5.42), and then calculate

h4m+m+mmwwmwr

On

PY(K)y=1- {1 -0 ( (5.43)

If RC? = ¢ and RC? # @, no matter what value the triplet (K?, K”¢', K“!) takes,
colluders cannot generate a colluded copy of the highest resolution while still achieving
fairness of collusion. However, there exists at least one (K?, Kb¢!, K9y with which
colluders can generate an attacked copy of medium resolution with F¢ = F,, U F,; and
still guarantee the equal risk of all colluders. In this scenario, the calculation of PY (K)
is similar to that when RC> # ¢ and is not repeated here.

IfRC? = @and RC? = @, to ensure that all attackers have the same risk, colluders can
generate only a colluded copy of the lowest resolution with /¢ = Fj. In this scenario,
PY(K) = P}(K).

Once we obtain PY(K) and P} (K), the analysis of KU and K%, is the same as
that of Wang et al. [61] and is omitted.

Catch-more

In the catch-more scenario, the goal of the fingerprinting system is to capture as many
colluders as possible, though possibly at a cost of accusing more innocent users. For this
scenario, the set of performance criteria consists of the expected fraction of colluders
that are successfully captured, E[ F,], and the expected fraction of innocent users that are
falsely placed under suspicion, E[F,]. The system requirements for such applications
are E[Fy] = g and E[F,] < Ajp.

Similar to the catch-one scenario, if we fix E[F,] as A 7,, given (|U?[, U<, [U4l)),
(Np, N.1, Ne2), and the total number of colluders K, we define

FY(K) 2 max E[F,],
L‘,(KZ’,Kb"’l ’Kall)

sit. KP4 KP'4 K=K, 0<KP<|UY,
0 < Kb,el < |Ub,el|’ 0 < Kall < |Uall|’

and the fairness constraints in Table 5.1 are satisfied; (5.44)
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and FXK)2  min  E[F]
Lc’(Kb’Kb.el’Kall)

s, KP4 KM 4R =K 0<KP<|U,
0 < Kb,el < |Ub'el|,0 < Kall < |Ua”|,
and the fairness constraints in Table 5.1 are satisfied, (5.45)
which are the upper and lower bounds of E[F;], respectively. F;j (K) and F dL (K) are

decreasing functions of K, as the collusion attack is more effective in undermining the
tracing capacity with larger number of attackers. Then, we define

KU

max

arng?x{F;](K) > g}

and KL 2 arg max(F (K) = 24}, (5.46)
which are the upper and lower bounds of K,,,, in the catch-more scenario, respectively.
The analysis of (FY(K), FX(K))and (KY, , KL )in the catch-more scenario is similar
to that in the catch-one scenario and is thus omitted here. Similar to the scenario in which
users receive copies of the same resolution [100], in scalable fingerprinting systems, the
detection threshold /4 is determined only by A s, and K, is not affected by the total
number of users in the catch-more scenario.

Figure 5.10 shows the simulation results on the collusion resistance of the fin-
gerprinting systems in the catch-more scenario. In our simulation, (Np, N,1, Nep) =
(50000, 50000, 100000) and o> = 20°2. Figure 5.10(a) plots FY(K) and F*(K) versus
the total number of colluders K when |U?| = |U?¢!| = |U“/| = 300 and Asp =0.01.
Under the requirements that E[Fy;] > 0.5 and E[F,] < 0.01, from Figure 5.10(a),
KUY, . is approximately 180 and K%  is around 70. Figure 5.10(b) plots K, and
KL, . versus As, with fixed 1, = 0.5. From Figure 5.10(b), the fingerprinting sys-
tem can resist a few dozen to hundreds of colluders, depending on the resolution of
the colluded copy, as well as the system requirements. If the fingerprinting system
can afford to put a large fraction of innocents under suspicion, it can withstand more

colluders.

Catch-all

In this scenario, the fingerprints are designed to maximize the probability of capturing all
colluders, while maintaining an acceptable number of innocents being falsely accused.
This goal arises when data security is of great concern and any information leakage
could result in serious damage. Assume that there are a total of M users and a total of
K colluders in the system. This set of performance criteria consists of measuring the
probability of capturing all colluders Py . = P [miniegc T]g Uy , and the efficiency

rate R = %, which describes the number of innocents falsely accused per col-

luder successfully captured. The system requirements for these applications are R < 6,
and Py q; > 604.
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Similar to the catch-one scenario, given (|U?|, [U”¢!|, |[U“"|) and (N}, N.1, N.,), for
a fixed total number of colluders K and fixed P, ,; = 6,4, define

RY(K) = max R
LL"(Kb’Kb.El’Ka”)

sit. KP4 KP4 KUM=K, 6 0<K’<|U,
0 < Kb,el < |Ub,el|’ 0 < Kall < |Uall|’

and the fairness constraints in Table 5.1 are satisfied, (5.47)
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A .
and RY(K)= min R,
LC,(Kb,Kb"'l ’Kall)

st KP4 KP4 K=K, 0< Kb < U
0 < Kb,el < |Ub'el|, 0 < Kall < |U0”|,

and the fairness constraints in Table 5.1 are satisfied, (5.48)

which are the upper and lower bounds of R, respectively. We further define

KU

max

argm[?x{RL(K) <6}

and K.

max

arg m[?x{RU (K)<6,} (5.49)

as the upper and lower bounds of K4, respectively. The analysis of KY and KL in
the catch-all scenario is similar to that in the catch-one scenario and is not repeated.

In our simulations of the catch-one scenario, we let |U?|:|U%¢!|:|U%| = 1:1:1 and
(Np, Ne1, Nep) = (50000, 50000, 100000). Figure 5.11(a) plots RY(K) and R (K) ver-
sus the total number of colluders K when there are M = 450 users and 6; = 0.99. We
consider a scenario that is required to catch all colluders with probability larger than
0.99 (Py.an = 0.99) and accuse no more than one innocent for every 100 colluders
captured (R < 0.01). Under these requirements, from Figure 5.11(a), attackers should
collect more than K, - = 65 different copies to ensure the success of collusion, and the

scalable fingerprinting system is collusion-free when there are fewer than K% == 25

colluders. Figure 5.11(b) shows KU and K versus the total number of users M when
0;s = 0.99 and 6, = 0.01. From Figure 5.11(b), in the catch-all scenario with thousands
of users, the scalable fingerprinting systems can survive collusion by twenty to sixty
attackers, depending on the resolution of the colluded copy. It is collusion-secure if
the content owner distributes no more than thirty different copies. The non-monotonic

behavior in Figure 5.11 can be explained in the same way as in the catch one scenario.

Chapter summary and bibliographical notes

In this chapter, we use multimedia fingerprinting system as an example, and analyze how
colluders achieve equal-risk fairness and how such a decision influences the fingerprint
detector’s performance.

We first investigate how to distribute the risk of being detected evenly to all collud-
ers when they receive copies of different resolutions because of network and device
heterogeneity. We show that a higher resolution of the colluded copy puts more severe
constraints on achieving fairness of collusion. We then analyze the effectiveness of such
fair collusion attacks. Both our analytical and simulation results show that colluders are
more likely to be captured when the colluded copy has higher resolution. Colluders must
take into consideration the tradeoff between the probability of being detected and the
resolution of the colluded copy during collusion.



5.4 Chapter summary and bibliographical notes 83

6
— RYK)
"y SR
5¢ [N ]
f \
) \
4+ ‘ \ B
; N
sl | <«—RYK) |
|
ol C |
| S OONG
s ) T TN
1h | T~ 1
/' RYK) T
0 /‘“ L = - L L L L
0 50 100 150 200 250 300
Total number of colluders
(a) RY and R
90
_ Kkt
80T | Wi u |
70/ T ]
__60f 1
T
S 50 1
T
S ol ]
x
& Ko
301 — i 1
o0t / ]
101 P / 1
0 0 ‘ 1 ‘ 2 ‘ 3 4
10 10 10 10 10

Total number of users M
(b) K’IIIJL(L(L' an(l KTLI/L(L(L'
Fig. 5.11 The collusion resistance in the catch-all scenario. 6, = 0.99 and 6, = 0.01. In (a),
M =450 and |U?| = |U>¢!| = |[U“| = 150

We also analyze the collusion resistance of the scalable fingerprinting system for
various fingerprinting scenarios with different requirements. We evaluate the maximum
number of colluders that the system can resist, and show that scalable fingerprinting
system can withstand dozens to hundreds of colluders, depending on the resolution
of the colluded copy as well as the system requirements. We also provide the lower

and upper bounds of K,,,. From the colluders’ point of view, K,Zn]ax tells attackers
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how many independent copies are required to guarantee the success of collusion under
all circumstances. From the content owner’s point of view, to achieve a collusion-free
condition, a desired security requirement is to make the potential colluders very unlikely
to collect more than K% copies.

Recent research on collusion attacks against multimedia fingerprinting systems has
focused on many different topics. Intracontent collusion attacks [101-104] are specific
for video content. Multiuser collusion was modeled by Ergun ef al. [63] as averaging
different copies with equal weights followed by an additive noise, and such a model was
generalized to multiple-input—single-output linear shift invariant filtering followed by
an additive Gaussian noise by Su ef al. [65]. The collusion attack model of nonlinear
collusion attacks were examined and analyzed by Stone and by Zhao ef al. [66,67].
Furthermore, to support multimedia forensics, there have been a number of works
on anticollusion multimedia fingerprint design [62,69,72,73], which can resist such
multiuser collusion as well as common signal processing and attacks on a single copy
[105,106]. Interested readers can also refer to reference [76] for scalable video coding
techniques.



6.1

Leveraging side information in
colluder social networks

In general, side information is the information other than the target signal that can
help improve system performance. For instance, in digital communications, side infor-
mation about channel conditions at the transmitter’s side can help reduce the bit error
rate, and in learning theory, the side information map can also improve the classifi-
cation accuracy [107]. In this chapter, we use multimedia fingerprinting as an exam-
ple and discuss how side information affects user behavior in media-sharing social
networks.

In the scalable fingerprinting system in Chapter 5, given a test copy, the fingerprint
detector simply uses fingerprints extracted from all layers collectively to identify collud-
ers, and does not use any other information in the detection process. Intuitively, if some
information about collusion can be made available during the colluder identification pro-
cess, using such side information can help improve the traitor-tracing performance [108].
In this chapter, we investigate two important issues in multimedia fingerprinting social
networks that are related to side information: which side information can help improve
the traitor-tracing performance, and how it affects user behavior in multimedia finger-
printing systems.

In this chapter, we first examine which side information can help improve the traitor-
tracing performance; our analysis shows that information about the statistical means
of the detection statistics can significantly improve the detection performance. We then
explore possible techniques for the fingerprint detector to probe and use such side
information, and analyze its performance. Side information not only improves the traitor-
tracing performance, but also affects each colluder’s probability of being detected and
colluders’ strategy to achieve equal-risk fairness. In this chapter, we build a game-
theoretic framework to model the colluder-detector dynamics, analyze how colluders
minimize their probability of being detected under the equal-risk constraint, and examine
the impact of side information on the Nash equilibrium of this game.

Probing and using side information

This section analyzes which side information about collusion can help improve collusion
resistance, and studies how to probe such side information from the colluded copy. As in
Chapter 5, the discussion is under the framework of three-layer scalable video coding and
fingerprinting. Here, we consider the scenario in which the colluded video contains all
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three layers, and thus has the highest quality. The analysis for other scenarios is similar
and is thus omitted. Without loss of generality, users in U*// are used as an example to
demonstrate the detection process and analyze the performance. For users in U>¢! and
U?, the colluder identification process and the performance analysis are similar.

Different fingerprint detection strategies

A nonblind detection scenario is considered, in which the host signal is first removed from
the test copy before colluder identification. The detector then extracts the fingerprint Y ;
from the jth frame V; in the colluded copy. Then the detector calculates the similarity
between the extracted fingerprint Y and each of the original fingerprints {W"}, compares
it with a predetermined threshold /, and outputs the estimated identities of the colluders
SC. However, because the fingerprint in the colluded copy Y contains three layers, when
detecting fingerprints, there are many different ways to measure the similarity between
the extracted fingerprint Y and the originally embedded one W,

Collective fingerprint detector

The previous chapter considered a simple fingerprint detector that uses fingerprints
extracted from all layers collectively to identify colluders. For user i, the detector first
calculates FO = FO N F¢, where F® contains the indices of the frames received by
user i and F¢ = Fj, U F,; U F,,. Then, the detector calculates

TN® = Z (Yj,W?)) / Z ||W5»i)||2, (6.1)
jeF®

JjeF®

where | |W5»i) || is the Euclidean norm of Wy) Given a predetermined threshold 7, SC e =
{i : TND > h}.

With orthogonal fingerprint modulation, for a user i who receives a high-resolution
fingerprinted copy, under the assumption that the detection noises are i.i.d. Gaus-
sian (0, 02), the detection statistics {7 N”'} in (6.1) are independent Gaussian with
marginal distribution

N (n,02), ifi e SC,
N(0,02), ifi¢&SC,

i _ (I =B1 = B2)Np + (1 —a1)Ney + Nez o
¢ Kall Nb+Nel+NeZ v

TNY ~

where (6.2)

Here, Ny, N.i, and N, are the lengths of the fingerprints embedded in the base layer,
enhancement layer 1, and enhancement layer 2, respectively. If user i is a guilty colluder,
his or her chance of being detected is

_ @
PO =0 (h a ) : (6.3)

On
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and the probability of falsely accusing user i if he or she is innocent is

P =0 (h) . (6.4)

On

With the collective detector, if colluders follow Table 5.1 to select the collusion param-
eters, P{) is the same for all colluders and they have the same probability of being
detected.

Fingerprint detection at each layer

Given Y,;, Y.1, and Y, which are the fingerprints extracted from enhancement layer 2,
enhancement layer 1, and the base layer, respectively, in addition to the collective detector
(6.1), the digital rights enforcer can also examine Y., Y., and Y, independently and
use the detection results at each individual layer to estimate the colluders’ identities.
Therefore, in addition to the collective detector, the digital rights enforcer can also use
detectors at base layer, enhancement layer 1, and enhancement layer 2. To demonstrate
this colluder identification process and analyze its performance, we look at users in U%/
who receive all three layers as an example. The analysis for users in U>¢! and U? is
similar and is thus omitted.

Let F; be the set of indices of the frames in layer # in which ¢ = b, el, e2 represents the
base layer, enhancement layer 1, and enhancement layer 2, respectively. Forusersi € U%/
who receive all three layers from the content owner, given (Y ;} ¢, , the fingerprints from
layer ¢ of the colluded copy, the detector at layer ¢ calculates the detection statistics

TND = | 3y, W) / > IwoR (6.5)
JEF

JEF;

to measure the similarity between the extracted fingerprint and the originally embedded
fingerprint. The detector at layer ¢ accuses user i as a colluder if 7 N,([) > h, and sets
ieSC , which is the suspicious-colluder set. Here, % is a predetermined threshold.

The analysis of the detection statistics T’ N,(i) in (6.6) below is similar to that of 7 N®
in (6.1). If the detection noises are i.i.d. and follow Gaussian distribution (0, 0.2), for
useri € U, T N,(i) are independent Gaussian with marginal distribution

N, o2 if ieSC,

N©O,0%) if i¢SC,
J_

Kall

TND ~

where ) = (1 — B — ) >)

SR

Kall

() _ vV Ne

(l) (1 — ] ) Oy, and Moy = Kall Oy-

(6.6)

Therefore, the probability of successfully capturing user i € U/ if he or she is guilty is

@)
PP =0 (h a ) , (6.7)

On
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and the probability of falsely accusing this user if he or she is innocent is

R%=Q(h). (68)

On

It is clear from (6.6) and (6.7) that the higher the ,uﬁ”, the better the traitor-tracing
performance.

Performance comparison of detection types

This section compares the performance of the four detection statistics (6.1) and (6.6)
when identifying colluders in SC*!. From the preceding analysis, for a given 4 and a
fixed Py,, comparing P, of different detection statistics is equivalent to comparing their
means.

For a colluder i € SC*, Figure 6.1 shows an example of the means of the detection
statistics in (6.1) and (6.6). In Figure 6.1, we first generate independent vectors following
Gaussian distribution N(0, 1), and then apply Gram—Schmidt orthogonalization to gen-
erate orthogonal fingerprints for different users. The lengths of the fingerprints embed-
ded in the base layer, enhancement layer 1, and enhancement layer 2 are N, = 50000,
N, = 50000, and N, = 100000, respectively. In Figure 6.1, we fix the total number of
colluders as K = 250, and K® = 50 of them receive the fingerprinted base layer only.
Each point on the x axis corresponds to a unique triplet (K”, K¢!, K?). Colluders follow
discussion in Chapter 5 to select the collusion parameters and generate a colluded copy
with all three layers under the fairness constraints.
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From Figure 6.1, TN in (6.1) has the best performance when more than 60 percent
of the colluders receive a high-quality copy with all three layers. This is because in
this scenario, colluder i’s fingerprint spreads all over the entire colluded copy V, and
W@’s energy is evenly distributed in the three layers of V. Therefore, from detection
theory [60], fingerprints extracted from all layers should be used during detection to
improve performance. When K% /K < 0.6, owing to the selection of the collusion
parameters, a significant portion of W()’s energy is in enhancement layer 2, whereas the
other two layers of the colluded copy contain little information on colluder i’s identity.
Thus, in this scenario, T N, 6('2) in (6.6) gives the best detection performance.

Colluder identification with side information

For the four detection statistics in Section 6.1.1, the traitor-tracing capability is deter-
mined by their statistical means. The larger the statistical mean is, the better the per-
formance. From the preceding analysis, the collusion parameters ({;} and {8} in the
two-stage collusion model) determine the statistical means of the detection statistics.
Thus, if side information about the statistical means of different detection statistics (or
equivalently, the collusion parameters) is available to the fingerprint detector, the detec-
tor should select the detection statistics with the largest statistical mean to improve the
traitor-tracing capability.

During the fingerprint detection and colluder identification process, the fingerprint
detector should first examine the colluded copy and probe such side information, then
select the best detection statistics and identify colluders. As an example, to identify
colluders who receive all three layers, the key steps in probing the means of the detection
statistics and selecting the optimum detection statistics are as follows:

* For every user i € U/, the detector first calculates TN®, TND, TN and TN, a
in Section 6.1.1, and obtains

—all . 0 — all . )
SC ={i:TN" >h}, SC,, ={i: TN, > h},
¢ =i TND > h), and SC, = (i : TN > hy) (6.9)

for a given 4.

o The ldetectorl?omblnes these f?ur sets of estimated colluders in U%! and lets SC* =
—al
SC USC , USC,, USC, .
* Given SC , the detector estimates the means of the four detection statistics in
Section 6.1.1

e 3 TN® 3 TNY

/J’c = —~all Mez = —~all °
~at |SC | ~ai |SC |

Ne keSC

R TN ) TN®

Pa= Y —ar. ad =) — (6.10)
~a |SC | ~all |SC |
keSC keSC
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* The detector compares fi., fle2, fle1 and fi, and selects the detection statistics with
the largest estimated mean. For example, the collective detector in (6.1) is chosen if
1 has the largest value.

When identifying colluders in SC?¢!, the side information probing process is similar
and is not repeated. Then, the fingerprint detector follows Section 6.1.1 and estimates
the identities of the colluders.

Performance analysis and simulation results

In our simulations, we simulate three different fingerprint detectors: the simple collective
detector in (6.1); the optimum detector with perfect knowledge of the statistical means of
the four detection statistics; and the self-probing detector, which first uses the algorithm
in Section 6.1.3 to select the best detection statistics and then follows Section 6.1.1 to
identify colluders.

The simulation setup is the same as that in Figure 6.1, and the simulation results
shown in Figure 6.2 are based on 10000 simulation runs. There are a total of K = 250
colluders, and K = 50 of them receive the fingerprinted base layer only. Each point
on the x axis in Figure 6.2 corresponds to a unique triplet (K?, K?¢', K"). Colluders
select {o, Bi} in the same way as in Chapter 5 and generate a colluded copy with all
three layers. For each frame j in the colluded copy, we adjust the power of the additive
noise such that ||n;||* = ||W(ji)| |2. Other values give the same trend. When estimating

the statistical means of different detection statistics, %, is chosen to let P(-ia) =102 for
an innocent user i ¢ SC.

Figure 6.2(a) plots the probability that the probing algorithm in Section 6.1.3 selects
the optimum detection statistics when identifying colluders in U%/. In the example
in Figure 6.1, we choose only between TN® and TNY, as TN') and TN never
outperform the other two. From Figure 6.2(a), the probing algorithm selects the optimum
detection statistics with probability 0.6 when K*/ /K a 0.6, whereas in other scenarios,
the detector always picks the best detection statistics. From Figure 6.1, when K%/ /K ~
0.6, . and ,LLSZ) have similar values and, therefore, 7N® and TN 6(12) have approximately
the same performance. Consequently, in this scenario, choosing the suboptimal detection
statistics does not significantly deteriorate the detection performance. When u. and u(elz)
differ significantly from each other, the self-probing detector always chooses the optimal
detection statistics when identifying colluders in U,

To evaluate the traitor-tracing performance of the colluder identification algorithm
with side information, we consider the catch-one scenario, in which the fingerprint
detector aims to capture at least one colluder without falsely accusing any innocents. In
this scenario, the criterion used to measure the performance is £; and Py,,. The analysis
for other scenarios using other performance criteria is similar and gives the same trend.
Forafixed Py, = 1072, Figure 6.2(b) shows P, of the three detectors. From Figure 6.2(b),
using side information about the means of different detection statistics can help the
fingerprint detector significantly improve its performance, especially when K/ /K is
small and the colluders’ fingerprints are not evenly distributed in the three layers of the
colluded copy. Furthermore, from Figure 6.2(b), when the difference between . and
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Fig. 6.2 Performance of the self-probing fingerprint detector for the example in Figure 6.1.
(a) Probability of selecting the optimum detection statistics when identifying colluders in U,

(b) P, of the collective detector, the optimum detector with perfect knowledge of the detection
statistics’ means, and the self-probing detector that probes the side information itself

/,L(eiz) is large, the side information probing algorithm in Section 6.1.3 helps the detector
choose the best detection statistics; achieve the optimal performance. When . and ;Lﬁ’z)
are approximately the same, the performance of the self-probing fingerprint detector is
almost the same as that of the optimal detector with perfect knowledge of the means of
the detection statistics; the difference between these two is no larger than 0.005 and can
be ignored.
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Fig. 6.3 Each colluder’s probability of being detected (P") with the self-probing fingerprint
detector

Impact of side information on fairness of multiuser collusion

Without probing side information, the detector will always use all frames collectively
to identify colluders, hoping that more frames will give the detector more information
about colluders’ identities. On the other side, colluders adjust the collusion param-
eters to seek the collective equal-risk fairness. Under such circumstances, collud-
ers and the fingerprint detector reach the collective fairness equilibrium. However,
side information about collusion not only improves the fingerprint detector’s perfor-
mance, but it also affects each colluder’s probability of being detected and influences
how they collude. Thus, side information breaks the collective fairness equilibrium
between colluders and the fingerprint detector, and both sides need to search for a new
equilibrium.

To demonstrate how side information breaks the collective fairness equilibrium,
Figure 6.3 shows each colluder’s probability of being detected with the self-probing
fingerprint detector. The simulation setup is the same as that in Figure 6.2. From
Figure 6.3, when K“/K < 0.6, colluders who receive all three layers have a much
larger probability of being detected than the others. In this example, during collusion,
attackers consider only the collective detector in (6.2), and they select the parameters
{a;} and {B;} such that {T N, c(i )} in (6.2) have the same statistical mean for all attackers.
However, during the colluder identification process, the fingerprint detector considers
all possible detection strategies in Section 6.1.1, probes side information about detec-
tion statistics, and uses the one that gives the best collusion resistance. Therefore, with
the self-probing fingerprint detector in Section 6.1.3, colluders must find a new set of
collusion parameters to ensure the equal risk of all attackers.
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Game-theoretic analysis of colluder detector dynamics

In this section, we study the impact of side information on user behavior in multimedia
fingerprinting social networks, build a game-theoretic framework to analyze the dynam-
ics between colluders and the fingerprint detector, and investigate how they find the new
equilibrium.

In multimedia fingerprinting social networks, different users have different goals and
utilities. Colluders wish to generate a high-quality colluded copy for illegal redistribution
without being detected, whereas the fingerprint detector aims to accurately identify
colluders without falsely accusing others. We formulate their interaction as a game
with two players with conflicting objectives, and in this game, one’s loss is another’s
gain.

* Players: There are two players in this game. Colluders make their decisions first and
act as the leader, followed by the fingerprint detector, which detects colluders and acts
as a follower.

* Payoff function definition: To analyze the dynamics between colluders and the foren-
sic detector, we consider the scenario in which all colluders agree to share the same risk
and reward. Therefore, every colluder has the same goal and aims to minimize his or
her risk of being detected P¥) under the constraint that { ")} are the same for all col-
luders. Thus, a natural definition of colluder i’s payoff function is 7€ = 1 — P, the
probability that colluder i successfully removes traces of his or her fingerprint during
collusion. The fingerprint detector aims to catch as many colluders as possible without
falsely accusing others; our analysis in Section 5.2.1 shows that this is equivalent to
maximizing P{). Therefore, we define the detector’s payoffas 72 = PO =1 — 7€,

® Colluders’ strategies: Colluders’ strategies are the sets of collusion parameters
(a1, B1, B2) that achieve equal-risk fairness.

* Detector’s strategies: The fingerprint detector’s strategies include the collective detec-
tor in (6.1) and the single-layer detector in (6.6).

In this game, colluders are the leader and the fingerprint detector is the follower.
For a given colluded copy — that is, a given set of collusion parameters («, 81, 82) —
side information about the statistical means of the detection statistics can help improve
the detection performance; the fingerprint detector should always select the detection
statistics with the largest chance of successfully capturing colluders. Furthermore, the
self-probing detector in Section 6.1.3 achieves approximately the same performance
as the optimal detector with perfect information of the statistical means, and thus,
the self-probing detector is the fingerprint detector’s best response and maximizes the
digital rights enforcer’s payoff. In addition, from a game theory perspective, probing
side information at the detector’s side is equivalent to observing colluders’ action.
That is, in this game, the fingerprint detector (follower) can observe colluders’ actions,
and colluders (leader) have perfect knowledge of the fingerprint detector’s response.
Therefore, the colluder-detector game is a Stackelberg game with perfect information.



94

6.3

6.3.1

Leveraging side information in colluder social networks

Collusion “-an
parameter sets

Optimal detection
strategies

Fig. 6.4 Game tree illustration of colluder-detector dynamics

Equilibrium analysis

In the Stackelberg game, because the follower (detector) can observe the leader’s (col-
luders’) strategy, the game model can be solved by backward induction. It starts from
the last stage of the game, and finds the optimal detection strategy for each possible
set of collusion parameters (o, 81, B2). From our previous discussion, the self-probing
detector is the fingerprint detector’s best response and maximizes the detector’s payoff.
Then, given the self-probing detector, it moves one stage up and decides the opti-
mal strategy for colluders. Here, with the self-probing fingerprint detector, colluders
should consider the worst-case scenario, in which the fingerprint detector always selects
the detection statistics with the best detection performance. They select the collusion
parameters that minimize their risk under the constraint that all colluders have the same
probability of being detected. This is illustrated in Figure 6.4, in which Cy, C,, ..., Cy
are the possible sets of collusion parameters that achieve absolute fairness when the
fingerprint detector uses the optimal detection statistics to identify colluders; and D;,
D;, ..., Dy are the corresponding optimal fingerprint detection strategies. Colluders
select from among {C, C», ..., Cy} the one that gives them the smallest probability
of being detected. Thus, with side information, the equilibrium of the colluder-detector
game can be modeled as a min—max problem.

Min—-max formulation

For each user i, define ®® as the set including all possible detection statistics that can be
used to measure the similarity between the extracted fingerprint Y and user i ’s fingerprint
W®_ For example, D0 = {TN®, TNY, TN, TN} for a colluder i € SC*' who
receives all three layers, whereas D) = {T N, TNS), TNlSi)} foruseri € SC¢! who
receives a medium-resolution copy.

Define P (D, {ay, B;}) as the probability that colluder i is captured by the dig-
ital rights enforcer. Consequently, we can model the colluder-detector dynamics as a
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min—max problem:

min max P (DD {q;,
(B} DO ° ( {ar, Bi})

such that max Rq(i‘) (Z)(i‘), {ay, /Bk}) = max RfiZ) (’D(iz), {as, ,Bk}) ,Viy, i, € SC.
D1 D)
(6.11)

From the analysis in the previous section, for a given threshold 4 and fixed o2, P\ is
determined by the mean of the detection statistics that are used. Therefore, for colluder
i; € SC?, iy € SCP¢! and i3 € SC, (6.1 1) can be simplified to

min pu = M(il) (i2) (i3)

{a[ ﬁ/} max = Il’Lmax = /'Lmax’

st. 0<oy <1, 0<pBr <1,

where (), = ul", p) = max{uy”, ul, w2},

0, = max{uy”, ul, nly’, ). (6.12)
In (6.12),
i _ PivNe
—_ O—wa
c Kb
(i) _ Pav/No (i) _ %1V Nel
oo = Tgher wr Het = Tpper 9w
i o PeNo taiNet
¢ T Kbl N, + No
i =B = B)IVNy (i _ (L= @)y Ner
/’Lb — Oy, Iu’el = %ai_ w
Kall Kall
: N,
(i3) e2
/’L823 = Kall Ows
o _ (L=B1— BNy + (1 = a))Net + Ne
and pul = (1= A1 = B2)Np + (1 — @1)Net + Neo (6.13)

K4/Ny + Nei + Ne o
from the analysis in Section 6.1.1.

Given (K?, Kb, K¥"y and (N,, N,1, N,»), for colluder i; € SC?, i, € SC?¢! and
i3 € SC¥ who receive fingerprinted copies of different resolutions, they first find all
possible sets of collusion parameters {oy, Bi} that satisfy u() = p@) = pi3)  Then,
they select the one that gives them the minimum risk of being detected.

To summarize, without side information, colluders and the detector achieve the collec-
tive fairness equilibrium: the fingerprint detector uses the collective detection statistics in
(6.1), and colluders select the collusion parameter as in Chapter 5 to ensure the same risk
under the collective detector. Probing and using side information moves the equilibrium
of the colluder-detector game from the collective one to the min—max solution.

Analysis of the maximum mean

To solve the min-max problem in (6.12), we first need to analyze 1), _for each colluder

i and study which detection statistic gives the maximal mean under which condition.
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Note that for a colluder i; who receives the base layer only, there is only one detection
statistic 1), Thus, we will analyze only 1)  for colluders who receive at least two
layers.

6.3.2.1  For colluder i € SC"!
For colluder i € SCb ¢l who receives a medium-resolution copy, there are three possi-
bilities: p0),. = iy, 1l = ), and pfl) = p.

max
o 1D =D 1t p® = 4P then 1l > ) and p > . From (6.13), we have

o - 0 . BvNp o1/ Nei a1/ Noy

np = Ml < Kbel Oy = Kbl Oy < :32 = m (614)
Similarly, we have
O) o B2/ Ny BNy + a1 Ny
/‘L = K¢ b.el Oy = Ow
Kb-e Kbl /N, + N,
N,
s B> it (6.15)

= VNV Ny + Nt = VNy)'

Note that </ Ny, + A/ No1 > /Ny + N, —thatis, «/N,; > /N + N, — «/Np. There-

fore, we have TR ]\Z'ﬁ;‘l 7o 2 ““ﬁ and combmmg (6.14) and (6. 15) for col-

luder i € SC?¢!, we have

o _ 0 . o1 Ne
Moy = M ifand only if B, > . (6.16)
b VNp(v/Np + Net — «/Np)
o 1D = p®): In this case, u’) > pt and 1) > u©. We have
:u(ell) = I‘L(l) o1/ Ny Ow = Po/ M ow & B < 21 N s
Kb el Kb,el \/Vb
and 10> 0 & alVNelJ o PNy + o Ney -
el = Mc Kbel w = Kb’elm w
' Nei(W/'N, Nei — A/ Ne
o py < LV NalVNs + D (6.17)

Np

Because v/Np + N,i — /N, < /N, and CIVAAEY N;’\,ZFN"‘_*/NT‘) > “‘/ﬁ]\?, combining
the results in (6.17), we have

N (S T NoD) — /Nat
1O =W ifandonlyif p < “Y NV ”]\;L ) Do (618
b

o i) = u): This scenario happens if () > pL ) and i) > u(’)

analysis as in the previous two scenarios,

Following the same

a1 Ne
VNy(v/Ny + Net = /Np)

and 1> ul) & = & VNeily NZ’A;L Net = v/ Net)
b

M(ci) zuﬁj) & B <

(6.19)
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Note that /Ny + Ny < +/Np + +/N.1. Therefore, we have
VNp+ Ny — /Ny </No,g and +/Np+ Noy —/Noi < /Ny
N NV Np+ Noy — /Noy < Nei

NV ey i
o OV TN~ VNer) _ o1 Nei . (620)
Ny = VNy(v/Ny + Nt — /Np)
Consequently, £ = ;@ if and only if
o VNa Vo FNe) = VNe) _ o1 Ney . (621
Ny N B m(m_ \/Vb)

6.3.2.2  For colluder i € SC!!
For colluder i € SC*!, if the colluded copy includes all three layers, there are four
possibilities for 1o, i), = i, 1 = s uh = 1, and u), = u?.
o pu) = /Lg): Following the same analysis as in the previous section,

uhe =y e w2 ul u > pl. and ) > ul,

@) - ) vV Nei
my = et & Br+B<1—(1—0ap) ,
b : VN,
@O - ) VNex
My 2M€2<:>'31+'32§1_\/ﬁe[,’and
, 4 1 —a)N, + N,
1 = & ptpr <1 (1~ an)Ne + N (6.22)

" VNN Nyt N — W)

We have the constraint 0 < 81, 8, < B1 + B2 < 1 in (6.12) when selecting the col-
lusion parameters. Therefore, from (6.22), to satisfy ng) > ugz) and let ,ug) =
max{ug), /L?l) , [L(eiz), w}, Ney < N, must be true. This observation explains why, in
the example shown in Figure 6.1 in which N, = 2N,, among the four detection
statistics, TN, Z(,i) never achieves the best performance.
o 1D = 9 In this scenario,
M = Hel & med > ny)e w2 pd. and gl =l

\/NeZ
Nel '

ufff zuﬁf) Sar>1—-(1-p1—p)
i i VN
p = ul e a<1- Y2,
b Y Nel
(1 —B1 — B2)Nb + Ne2
LY Nel(\/ Nb + Nel + Ne — A Nel)
From (6.23), N < N, must hold to let /L(eil) = max{ug), /,L(eil), ,uflz) w9}, which is the
reason that in Figure 6.1 with N,y = 2N,,, T NLEII) never gives the best traitor-tracing

and

pl =1 & o <1- (6.23)

performance.
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o 1D = u®: Here, u®) = u% if and only if

( _al)Nel -V e2( Nb+Nel +N32—\/N62)

+B =1+
B+ B = N,

Ne2

and o] >1-— .
Nel

(6.24)

o ui) = ul): Following the same analysis as in the previous section, ul) == @ if
and only if

(l _al)\/Nel(\/ Nb + Nel + Ne - \/Nel) - Ne2

<1
Bi+ B2 = , ,
(1 — Oll)Nel — A/ Nez( Nb =+ Nel + NeZ — Nez)
+h <1+ vie)
B+ B2 = Ny

(I —a)Net + Nea
and Bi+pr=>1- .
VNp(WNp + Net + Ny — /Np)

(6.25)

Analysis of the feasible set

Given the parameters (N, N,|, N,») and (K?, K?¢', K"y and the previous analysis of
wii) ., the next step is to study how attackers achieve fairness of collusion and let p{0) .
be the same for all colluders. This section investigates the constraints on collusion to
ensure the fair play of the attack.

Without loss of generality, in this section, we use Np: N, :N,; = 1:1:2 as an example
to illustrate how colluders achieve the equal-risk fairness of the attack and analyze the
constraints on collusion. We consider the scenario in which colluders generate a high-
resolution colluded copy including all three layers. In this scenario, from the earlier anal-
ysis, for a colluder i, € SC?¢! who receives a medium-resolution copy, u!i2). has three
possible values: p!2) = u(”), wliz) = ugf), and p'2) = ;) Furthermore, for a col-
) or w(), and neither /L( f)

luder i3 € SC*! who receives all three layers, 3),is either
nor u( h ) can be the maximum. Thus, there are a total of six possible scenarios, which are:

(1) p@ = @l foriy € SCt¢! and p@) = u' for iy € SC,
b e2

max max

2) w2 = u fori, € SC' and ), = u% for iy € SC,

max
(3) w2 = u fori, € SC' and (i), = u;’ for iy € SC!,
(4) w2 = u$ foriy € SCP' and uli), = u® for iy € SC,

max

(5) pi) = Mgf) for iy € SC* and ), = u® for iy € SC*, and

max

(6) w2 = p fori, € SC*! and ') = pl foriy € SC.

max

This section analyzes the six scenarios one by one.

Scenario 1
In this scenario, for three colluders i; € SC?, iy € SC>*! and i3 € SC, ) = '\
for iy € SC™! and ). = u'% for iy € SC4! — that is, (6.13),

max
. :31“/Nb ; ﬁ2\/ Nb i VNZ
M(ll) = TUUN I’LE;;)X = Kb.el oy, and /’ngscz)x = Ka; Ouw- (626)
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To achieve the equal-risk fairness, colluders select the collusion parameters {«;, 8} such
that ) = p(2) = ;03 Therefore, we have

max*

\/N_eZ Kb Kb Kb,el Kb,el
B = K = ﬁKall, and  fr = ——p1 = ﬁW. (6.27)

For colluder i, who receives the medium resolution, because Mﬁjz) is the largest among

mes Mgf), w2}, from (6.16), the selected collusion parameters must satisfy

VN (/Np + Net — /Np)
ap < B

Nel
s N2Ny(v/Ny + Nei — /Np) K2
=42 v T (6.28)
el

In our example with Np:N,1:N,; = 1:1‘:2, A=Q2 - ﬁ)Kb’el/K“”. Similarly, for col-
luder i3 € SC#, to ensure ') (’23), from (6.24) and (6.27), a1, B and B, must

max = Me
satisfy
w > 14 (1 — B1 = B)Np — /Neza(/Np + Net + N — /Nep)
= Nel
A Nb \/NeZ(\/ Nb+Nel +Ne _\/N_e‘Z)
Nei Ny
V2N, KP4 K"

N al (6.29)

B =4—-2J2—V2(K" 4 K" /K if Ny: N :Npy = 1:1:2.
Define R® = K?/K, R>¢' = Kb¢! /K and R = K*! /K as the percentages of col-

luders who are in SC?, SC”¢!, and SC%", respectively. By combining (6.28) and (6.29),
scenario 1 will happen if and only if

\/E all : 2- (2 _ ﬁ)Rb b

To summarize, if (R?, R*¢!, R%") satisfies (6.30), colluders can achieve equal risk for
all colluders by following (6.27) through (6.29) when selecting the collusion parameters.

Scenario 2 _ _
In this scenario, 1(2), = u'? foriy € SC**' and u), = '3 for iy € SC*!. Following
the same analysis as in Section 6.3.3.1, for the example of Njy:N,:N,; = 1:1:2, if

(Rb, Rb¢1, R4y satisfies
max {ﬁRb, 2 —V2)1 - Rb)} < el
_ _ b _ b
§min{2 (2 ﬁ)R V2= 2R ,l—Rb},

6-2v2 = 3-42 (63D
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colluders can guarantee the equal risk of all attackers by selecting

Kb,el Kb
o) = N/EW, B = ﬁﬁ’
K ) Kb Kb,el
and 4_\/5—\/51((1”fﬁzfmln{l—\/zw,(z—ﬁ)]@”}(632)
6.3.3.3 Scenario 3
Given Nj: N, :Nep = 1:1:2,if (R?, R”¢', R*!) satisfies
2—(2—V2)R® 2—-V2)+2V2-2)R?
max ,
4 3-V2
2— (2 —+/2)Rb
< R < (—f), 1-R"Y, (6.33)
6 —22
and colluders select
Kb
pr = ﬁKall’
Kb,el Kb,el ) Kb,el Kb
max {2 Kal 1L,2-V2) Kall } =h = mm{ﬁ Kall - ﬁ[{all}’
b,el
and o) =2 — B2, (6.34)

Kall

then 112) = @ foriy € SCH and ), = u foriy € SC, and all colluders have

max

the same probability of being detected.

6.3.3.4 Scenario 4
Given Np:N, :Nep = 1:1:2, if

4 -2 2— 1R
max { 2 — /2, V2+(2-1) <R <1-R, (6.35)
6—+2
by choosing the collusion parameters as
4K° 3KY V2K
B1 > max g " gal (°
V2K — (V2 = DK + (2 — /2)Ke ™ K + K4’ K@
8, < mi K® 4K®
min , )
I= K — Kall' K + Kall
Kb,el K +Kall
B = B, and o =4— —F, (6.36)

Kb Kb
colluders achieve equal-risk fairness. In this scenario, u(2) = /Lg” for i € SC”¢! and
wis) = ) foriy € SCU.

max
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6.3.3.5 Scenario 5
Here, under the constraint that (R?, R?¢!, R¥!) satisfies

4-V2-(5-VR® V2
6—+2 4-V2

<1-—R?, (6.37)

< Rall

max {4Rb -1, «/sz,

all colluders have the same probability of being detected if they select

4K® 3K V2Kb }

ﬁK_(ﬁ_l)Kb+(2_ﬁ)Ka11’K+Kall_Kb’ Kall
[ K? 4K
Ar=min) gre Ky gl | °

K+Kull Kb,el
g Poomd e =T

B> maX{

B=4 B (6.38)

during collusion. In this scenario, (2 = % for iy € SC*¢! and ). = u® for
iy € SCall.

6.3.3.6  Scenario 6
If (R?, R"!, R“”) satisfies the constraint

- 3V2—4—(3V2—=TR? V2—(V2-1DR®
3/2-2 ' 3V2 -2

} <R <1 —R" (6.39)

and if the selected parameters are
_ 4K°
T V2K — (V2 - DK + (2 - V2Kl

3\/5[(1),61 + 3K —pKall
C(] 2 max 9
V2K — (V2 — DK? + (2 — V/2)K !

B

4(V2 — K> }
V2K — (V2 — DKb + (2 — J/2)Keall |~
4Kb,el
= AK (V- DKP + (2 — VoKl
4\/§Kb’€1

and B+ o = (6.40)

V2K — (V2 — DKb 4+ (2 — J2)Kall

then all colluders have the same risk and p!2) = p@ for i, € SC>! and p3) = pi)
for iy € SC.
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Min—-max solution

Given the analysis in Section 6.3.3, for three colluders i; € SC?, i, € SC”¢ and i3 €
SC they first identify all possible collusion parameters {o;, B;} that satisfy p() =
pbel = pall “and then select the one that gives them the minimum probability of being
detected.

To demonstrate this process, we use the system setup in Figure 6.2 as an example, in
which the lengths of the fingerprints embedded in the base layer, enhancement layer 1,
and enhancement layer 2 are N, = 5000, N,; = 5000, and N, = 10000, respectively.
When generating fingerprints, we first generate independent Gaussian vectors follow-
ing distribution A(0, 1) and then apply Gram—Schmidt orthogonalization to produce
fingerprints that have equal energies and are strictly orthogonal to each other.

Assume that there are a total of K = 250 colluders. Among the 250 colluders, we
use K? =50, K»¢!' =25, and K% = 175 as an example — that is, (R?, R>¢!, Ry =
(0.2,0.1,0.7). From Section 6.3.3, (R?, R”¢', R*!) satisfies constraint (6.35) in sce-
nario 4, constraint (6.37) in scenario 5, and constraint (6.39) in scenario 6.

* Because (R”, R>¢!, R¥!) satisfies constraint (6.35) in scenario 4, colluders can guar-
antee the equal risk of all colluders if they choose

b= e KD VARV 4sos
max , , —0. ’
o V2K — (V2 = DKb + (2 — V/2)Kal K 4+ Kall” Kall
. K" 4K
Bi < min re eyl i 0.4706,
Kb’el K+Kall
B = B, and oy =4— ———pB,. (6.41)

K? K?

Here, j1(2) = 11 for colluder iy € SC?*" and ;u(3). = 1 for colluder i3 € SC*.
For any colluder i € SC, () = has the smallest possible value of 2.0545 when B; =
0.4594, B, = 0.2297, and oy = 0.0951.

¢ Following (6.38), when colluders select parameters

8, > ma { 4Kb
X 5
b= V2K — (V2 — DK + (2 — V2)Kall
3K? V2K?
K + Kall — Kb gall [~ 0.4594,
[ K* 4K*
Pr=min o g [ = 04706,
K +Kall Kb,el

Bo=4-— Kb Bi, and o = Wﬂl, (6.42)

they have the same probability of being detected. Here, u!2) = u(eif) for colluder

max

ir € SCH! and pu®) = u® for colluder iy € SC'. For any colluder i € SC, u!i)

max
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reaches its minimum value of 2.0545 when 8; = 0.4594, 8, = 0.0951, and o =
0.2297.

¢ Following (6.40), colluders can also achieve fairness of collusion by selecting

_ 4K?

T V2K — (V2 = DKP + (2 — V2)K !

{ 3ﬁKb,el+3Kb_2Kall
o] > max

B

= 0.4594,

V2K — (V2= DK? + (2 — V2)K”
4(V2 — Kb
V2K — (V2 = DK? + (2 — V/2)K !
4Kb,e1
M= /3K — (V- DKP 1 (2 — J2)Kel
B 42K"!
V2K — (v/2 = DK + (2 — V2)K 4!

} = 0.2297,

=0.0951, and

B> —a; =03248 —a;  (6.43)

during collusion. In this scenario, 12) = 102 for colluder i € SCP¢! and p2) =

w for colluder i € SC*!, and pl!) = 2.0545 for all colluders.

The means of the detection statistics in these three scenarios are the same; therefore,
colluders can choose either (6.41), (6.42), or (6.43) during collusion. In fact, (6.41) and
(6.42) are the two boundaries of (6.43).

In the example of (K?, K>¢!, K4y = (50, 75, 125), the constraints (6.31) in sce-
nario 2 and (6.33) in scenario 3 are satisfied, and the minimum value of ()
is 2.5298, when colluders select (8; = 0.5657, B, = 0.0544, «; = 0.4485) or use
(B1 = 0.5657, B, =0.3929, «; = 0.4071) during collusion.

If (K?, Kbel, K4y = (50, 125, 75), none of the six constraints in Section 6.3.3 is sat-
isfied, and colluders cannot generate a high-resolution colluded copy while still achieving
equal-risk fairness. They must lower the resolution of the attacked copy to medium to
guarantee the equal risk of all colluders.

Simulation results

In our simulations, we test over the first forty frames of “carphone,” and use
F,={1,5,...,37}, F,1 =1{3,7,...,39}, and F,; ={2,4,...,40} as an example of
the temporal scalability. The lengths of the fingerprints embedded in the base layer,
enhancement layer 1, and enhancement layer 2 are N, = 42987, N,; = 42951 and
N = 85670, respectively. We assume that there are a total of M = 750 users and
|U| = [UP¢!| = |U“"| = 250. We first generate independent vectors following Gaus-
sian distribution A/(0, 1/9), and then apply Gram—Schmidt orthogonalization to generate
orthogonal fingerprints for different users.
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Fig. 6.5 Probability that the self-probing detector selects the optimum detection statistics with
the largest mean. The results are based on 1000 simulation runs on the first 40 frames of
sequence “carphone”

We assume that 0 < K?, K¢l K4/ < 250 are the number of colluders in subgroups
SCb, SCh¢!, and SC¥!, respectively, and the total number of colluders is fixed at
250. During collusion, colluders apply the intragroup collusion followed by the inter-
group collusion, and follow Section 6.3 when choosing the collusion parameters. In our
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Fig. 6.6 Simulation results on the first 40 frames of sequence “carphone” with R” = 0.2

simulations, we adjust the power of the additive noise such that ||n;| |2 =||JN D; W?) [12
for every frame j in the video sequence.

We compare the performance of three detectors: the simple collective detector in (6.1);
the optimum detector, which always selects the detection statistics with the largest mean;
and the self-probing detector in Section 6.1.3. The self-probing fingerprint detector
follows Section 6.1.3 when identifying selfish colluders. The detector first estimates the
means of different detection statistics, selects the detection statistics with the largest



106 Leveraging side information in colluder social networks

Catch one
1 . T :
—4— Collective detector
—+— Optimum detector
—o— Self-probing detector
0.95+ ]
09r N
n:c Y SN -
0.85F |
0.8 - |
0.75 s s ‘ ‘
0.45 0.5 0.55 0.6 0.65 0.7
Ka”/K
(a) Py
Catch more
0.4, : : ‘
—=— Collective detector
—+— Optimum detector
—o— Self-probing detector
0.35F 1
0.3F ]
u®
m
0.25F N
N
0.2+ |
0.45 0.5 0.55 0.6 0.65 0.7
kK
(b) E(Fa)

Fig. 6.7 Simulation results on the first 40 frames of sequence “carphone” with R? = 0.25

estimated mean, and then identifies the colluders. In our simulations, we fix Py, = 1073
and E[F,] = 1073,

Figure 6.5 plots the probability that the self-probing detector selects the optimum
detection statistics with the largest mean. Figures 6.6 and 6.7 show the performance
of the fingerprint detector when R” = 0.2 and R’ = 0.25, respectively. The results
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Fig. 6.8 Each colluder’s probability of being detected (P”’) when they follow Section 6.2 to
select the collusion parameters. K = 250

are based on 10000 simulation runs. In Figures 6.5 through 6.7, the x axis is R?,
the percentage of colluders who receive the low-resolution copy, and each point
on the x axis corresponds to a unique triplet (K?, K>¢!, K%'y where K = K - R®
and K»¢' = K — K? — K4l

From Figure 6.5, when the statistical means of different detection statistics differ
significantly from each other, the self-probing detector in Section 6.1.3 always selects the
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Fig. 6.9 Simulation results on first 28 frames of “tennis” from 1000 simulation runs. Py, = 1073
in (a), and E[F/,] = 1073 in (b)
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optimum detection statistics with the largest mean. When the difference between different
means is small, the optimum and the suboptimum detection statistics have approximately
the same statistical means, and selecting the suboptimum detection strategy does not
significantly deteriorate the detection performance when compared with the optimum
detection statistics. In Figures 6.6 and 6.7, the performance gap is smaller than 2 x 1073
and can be ignored. In addition, by exploring side information about collusion, the
probability of catching at least one colluder has been improved by 17 percent when R =
0.5and R” = 0.2, and by 12 percent when R*! = 0.45 and R” = 0.25. These simulation
results support our conclusions that exploring side information about collusion can
significantly help improve the detection performance, and the self-probing detector has
approximately the same performance as the optimum detector with perfect knowledge
of the detection statistics’ means.

Figure 6.8 plots each colluder’s probability of being detected when the colluders
follow Section 6.3 to select the collusion parameters. The simulation setup is similar
to that in Figures 6.5 through 6.7, and the results are based on 10000 simulation runs.
It is obvious that in this example, all colluders have the same probability of being
detected, and this multiuser collusion achieves equal-risk fairness of the attack with the
self-probing detector.

To show that the self-probing detector can be applied to various types of videos,
we also run the simulation on “tennis”, which is a fast-motion video. We use the first
twenty-eight frames of “tennis,” and use Fp ={1,5,...,25}, F,; =1{3,7,...,27},
and F,; = {2,4,...,28} as an example of the temporal scalability. The lengths of the
fingerprints embedded in the base layer, enhancement layer 1, and enhancement layer
2 are Ny = 45092, N,; = 45103, and N, = 90174, respectively. Other settings are the
same as the earlier ones. Figure 6.9 shows P; and E[Fj;] of the optimal detector,
the self-probing detector, and the collective detector when R = 0.25. It is clear from
Figure 6.9 that the self-probing detector achieves almost the same performance as the
optimal detector, which has perfect information about the mean value. Such a result
shows that the detection performance of the self-probing detector is not influenced by
the video characteristics.

Chapter summary and bibliographical notes

This chapter uses multimedia fingerprinting as an example to illustrate the impact of
side information on human behavior. We study how side information about multiuser
collusion can help the fingerprint detector increase the traitor-tracing capability, and
investigate its influence on colluder and the forensic detector’s strategies. We model the
dynamics between colluders and the fingerprint detector as a Stackelberg game, analyze
its Nash equilibrium, and derive the optimal strategies for both players.

We first investigate multimedia forensics with side information, and show that infor-
mation about the statistical means of the detection statistics can help significantly
improve the collusion resistance. We then propose a self-probing detector for the fin-
gerprint detector to probe such side information from the colluded copy itself. We show
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that the self-probing detector has approximately the same performance as the optimal
fingerprint detector with perfect information about the statistical means of the detection
statistics, and the difference between these two detectors can be ignored.

Side information not only improves the fingerprint detector’s collusion resistance, but
also affects each colluder’s probability of being detected and makes some colluders take
a larger risk than others. Thus, it breaks the collective fairness equilibrium between the
colluders and the fingerprint detector, and they must choose different strategies and look
for a new equilibrium. We model the colluder-detector dynamics with side information
as a two-player Stackelberg game in which the colluders are the leader and the fingerprint
detector is the follower. We show that under the assumption that colluders demand equal-
risk fairness, the min—max solution is the Nash equilibrium and is the optimal strategy
for both colluders and the fingerprint detector. Neither of them can further increase their
payoff and, therefore, they have no incentive to deviate from this equilibrium.

Researchers have already started to study modeling and analysis of collusion
[75,103,104]. The work of Wang et al. [61] studied the relationship between the maxi-
mum allowable colluders by a fingerprinting system and other parameters, such as the
fingerprint length, the total number of users, and the system requirements. Techniques
from different disciplines, including error-correcting codes, finite-projective geome-
try, and combinatorial theories, have been used in the literature to design multimedia
fingerprints that can resist collusion attacks [69,71-73].



Risk—distortion analysis of
multiuser collusion

In the previous chapter, we used multimedia fingerprinting social network as an example
and examined the impact of side information on users’ strategies. We showed that
information about the statistical means of detection statistics is useful to improve the
detection performance. A straightforward question to ask is whether there is other
information that may potentially influence user dynamics. In this chapter, we investigate
how side information changes the risk—distortion relationship in linear video collusion
attacks against Gaussian fingerprints.

Video data have the unique characteristic that temporally adjacent frames are similar
but usually not identical. Video collusion attacks include not only the intercopy attack
that combines the same frames from different copies, but also the intracopy attack that
combines temporally adjacent frames within the same copy. Because temporally adjacent
frames are not exactly the same, an intracopy collusion attack will introduce distortion.
Therefore, for a video collusion attack, there exists a tradeoff between the fingerprint
remaining in the colluded copy that determines colluders’ probability of being detected —
that is, their risk — and the quality of the colluded copy — the distortion. It is extremely
important for colluders to learn the risk—distortion tradeoff, as knowing this tradeoff
would help them choose the best strategy when generating the colluded copy. It is also
essential for the fingerprint detector to understand the risk—distortion tradeoff, as it
would help predict colluders’ behavior and design an anticollusion strategy [109].

To understand how side information influences the video-collusion social network,
we first explicitly explore the relationship between risk and distortion by conducting
a theoretical analysis of linear video collusion attacks against Gaussian fingerprinting.
We write the risk and the distortion as functions of the temporal filter coefficients used
in intracopy collusion, and model the collusion attack as an optimization problem that
minimizes the distortion subject to a given risk constraint. By varying the risk constraint
and solving the corresponding optimization problem, we can derive the optimal risk—
distortion curve.

Furthermore, we show that the detector can improve the detection performance given
the optimal coefficients that attackers use, and similarly, attackers can improve the
attack effectiveness given the optimal coefficients the detector uses. The knowledge
about optimal coefficients is the side information of video-collusion social networks.
We formulate the collusion attack and the colluder identification problem as a dynamic
cat-and-mouse game and study the optimal strategy for each player in the game, given
knowledge of the opponent’s strategy. In practice, because attackers need to act first, a
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powerful detector will be able to estimate attackers’ strategy. In such a case, we show
that attackers’ best strategy is the min—max strategy — that is, to minimize the risk under
the assumption that the detector has perfect knowledge of their strategy. We also discuss
attackers” min—max strategy when they add additive white Gaussian noise (AWGN)
to the colluded copy to further hinder the detection performance. Finally, we conduct
several experiments to verify the risk—distortion model using real video data.

Video fingerprinting

In this section, we introduce video fingerprint embedding, detection, and a video-
collusion attack model.

Fingerprint embedding

Let S; be the ¢th frame of the host video sequence, which can be the pixel values or
the DCT coefficients. Let Xﬁk) and Wt(k) be the 7th frame of the fingerprinted video and
fingerprint signal for user k, respectively. Then, the fingerprint embedding process of
the ¢th frame for the kth user can be written as

xP =g +wh. (7.1)

Here, we drop the term JND, the just-noticeable difference from human visual models,
to simplify the notations.

As in the previous chapters, orthogonal fingerprint modulation is used; (W(i), Wt(j )) =
03)8,-71', where §; ; =1 ifi = j and §; ; = 0 if i # j. Moreover, to resist an intracopy
collusion attack [110,111], the fingerprints W® between neighboring frames for the
same user k are correlated with each other, whereas the correlation is determined by
the similarity of the host frames and the temporal distance of the indices [110] as
given by

k k _
Pl W = LS, S,), (7.2)
_ cov(4,B) : gl : :
where p[4, B] = NIl is the statistical correlation coefficient between random

variables 4 and B, and y is a scaling parameter (0 < y < 1) that controls the tradeoff
between the visual quality and the degree of the resistance. If y is large, then the degree
of the resistance against the intracopy attack is high. However, the visual quality of the
fingerprinted video becomes poor owing to the veiling artifacts. On the contrary, if y is
small, then the veiling artifacts are less significant, and the fingerprinted video becomes
vulnerable to the intracopy attack.

Fingerprint detection

Without loss of generality, we analyze the frame-based detection. Similar analysis can
be easily extended to group-of-picture (GOP)-based or sequence-based detection. For
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each frame V; of the colluded copy, the detector extracts the fingerprint using
Yy =V,—S. (7.3)

Then, for each user k£ who receives frame ¢, we compute the detection statistics using

(k) 0T
Wy, Wy,

TN® = {7 ® 0 = ! ® L (7.4)
/20l 1]

Finally, given a threshold 4 that is determined by false alarm probability, the estimated
attacker set for frame ¢ is SC, = {i: TN,(Z) > h}.

Video-collusion attack model

With orthogonal fingerprint modulation, nonlinear intercopy collusion attacks can be
approximated as a linear intercopy collusion attack followed by AWGN [61], and we
consider only linear intercopy collusion attacks. Let M be the total number of colluders.
Each attacker first performs an intracopy attack by applying temporal filtering on the
temporally adjacent video frames. Then, all attackers collude together to perform an
intercopy attack. Because the fingerprint in every frame for each attacker Wt(k) is inde-
pendent and identically distributed (i.i.d), if we assume that all attackers share the same
risk, then the weights allocated to the intracopy and intercopy attacks would be the same
for all attackers. Therefore, frame ¢ in the colluded copy is

n

v, = f: % > axil]. (1.5)

k=1 i=—n

where Y a; = 1. Attackers choose {a;} to minimize the collusion distortion under

a certain risk constraint, and the detector is to estimate the a; that attackers use and
explore side information to improve the detection performance.

Risk-distortion modeling

In this section, we analyze the analytical model of the relationship between the colluders’
risk and the distortion of the colluded copy without side information.

Risk of the colluders

Given the colluded frame V;, the detector extracts the fingerprint ¥; by

M
1 :
V=V, -8 = (es + i ZW(Z)> a, (7.6)

i=1

where es = [S—y—Sp.o.Sa— 81 WO = 2, .. w1 and a =
[a_n, ... ,a,,]T.
Because the linear combination of the Gaussian distribution is also a Gaussian distri-

bution, if we assume that the residue satisfies Gaussian distribution [112,113] — that is,
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[S;+i — Si] ~ N(0, 0?)—then esa ~ N(0, ||Aa|[3), where A = diag{o_,, ..., 0,}and
[|x||2 is Ly-norm of x.
According to (7.4), the detection statistic T’ N,(k) can be written as
k ,
w_ WYy P esat+ L3N Wha)

= . 7.7)
3 T (
1w 1w

From (7.7), we know that the detection statistic of the attacker k, T N,(k) , satisfies
Gaussian distribution N(u®, || Aa| 3) [60], where the mean w® is given by

(k)
w_ [ 1,
’ _E[|m&m Rz "
where
o, w) S O]
p=|E (gt ) B s )| (7.9)
1w TRl

In this chapter, we use R to denote colluders’ risk — that is, their probability of being
detected. Given a detection threshold /4, according to (7.7) and (7.8), the risk R can be
computed by

h—LpTa
R=P[TN® > h]=0 <||AA;||z> , (7.10)

where Q(x) is the Gaussian tail function Q(x) = [ ﬁ exp*; dt.

Similarly, the detection statistic of an innocent user satisfies Gaussian distribution
N(O, [|Aa] |§) [60]. Therefore, the probability of an innocent user to be falsely detected
as an attacker, Py, is given by

h
P”:QQMMJ' 1D

From (7.10) and (7.11), we can see that the threshold % controls the tradeoff between
the positive detection probability R and the false alarm probability Py, . If the desired
false alarm probability Py, is upper-bounded by o, then s = O~ !()||Aal|, and the risk

R becomes
-1 A S
R o2 @il — fpTa) 712
[|Aall>

Distortion of the colluded frame

From (7.6), we can see that the difference between the colluded frame V; and the original
frame S; is Y;. Therefore, the distortion D of the colluded copy, which is defined as the
mean square of the difference, can be computed by

D = E [||Y,|]’] =a"Ka, (7.13)
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Fig. 7.1 Risk—distortion curve

where K = E[|les|[’] + + E[[IW"|?] and the second equality follows from the
independence between S and W® and the orthogonal fingerprint modulation with
E[IWO[2] = E[||WW| 2], for all &.

The risk-distortion relationship

From (7.12) and (7.13), we can see that both the distortion and the risk are determined
by the coefficients of the temporal filter a. In Figure 7.1, we show the risk—distortion plot
using different coefficients. We can see that, for a fixed risk R, there are several different
coefficients, a;, a,, and a3, which would lead to different amounts of distortions, Dy,
D,, and Ds. A rational attacker will choose the optimal coefficient a that minimizes
the distortion to generate the colluded copy, which leads to the risk distortion curve.
Therefore, the attacker’s problem can be formulated as

1 1 .
min —D = —-a’'Ka
a

2 2
-1 A _ 1T
st R=0 O (w)l|Aall; — ;p”a <R,
l[Aall
17a=1, (7.14)

where the scale factor % in the objective function is only for computation convenience.

Obviously, this optimization problem is nonconvex owing to the existence of the
quadratic term ||Aal|, in the denominator of the first constraint. However, because
the Gaussian tail function Q(x) is a monotonically decreasing function, we can rewrite
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the optimization problem as
1 1
min -D = -a Ka
a 2 2

s [0 (Ry) — 0] 11Aall + 5 pTa <0,

1"a=1. (7.15)

The optimization problem above is a quadratically constrained quadratic program
(QCQP) problem [114]. If 071 (Ro) = O~ () —thatis, Ry < «, the problem is a convex
optimization problem. We can find the optimal solution using numerical methods such
as the interior point methods [114].

If 07'(Ry) < O (), which means Ry > «, the problem is nonconvex. In gen-
eral, a nonconvex QCQP problem is a nondeterministic polynomial-time (NP)-hard
problem [114] and it is very difficult to find the global optimal solution. However, by
approximating the concave term with its first-order Taylor expansion, a locally optimal
solution can be solved using a constrained concave—convex procedure (CCCP) [115],
and the relaxed optimization problem becomes

1 1
min —D = —-a'Ka
a

2772
TATAa 1
st [0 (Ro)— 0 ()] 222~ yTa <o,
07 = 0Tl R g
1Ma=1. (7.16)

Given an initial a®, CCCP computes a’*! from ar iteratively, using (7.16). It can be
shown that CCCP converges to a locally optimal solution of the original optimization
problem (7.14) [116].

According to (7.15) and (7.16), the optimal coefficient a that minimizes the distortion
subject to a predefined risk constraint Ry can be found using numerical optimization
methods. The minimal distortion for the given risk constraint Ry can then be computed
using (7.13). In this way, the optimal risk—distortion relationship for the colluders can be
obtained. Now the only question is how to find a good initial a(*) for the CCCP process
to converge to a good local optimum.

Initialization for CCCP

According to (7.15), the reason that we need to use CCCP to find the locally optimal
solution is the quadratic term ||Aa||, in the constraint. When the value of ||Aa||, is
around a constant 8, we can relax the optimization problem by approximating ||Aal||,
with 8. Then, the relaxed optimization problem becomes

1 r
min —D = —a’'Ka
a 2 2

s.t. a— ,
n,p n=<

1Ta=1, (7.17)
where n = [Q () — O~ '(Ro)]B.
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From (7.17), we can see that the objective function is quadratic and the constraints are
linear. The optimization problem is a quadratic problem, which is convex. The optimal
solution for the relaxed problem can be found by solving the Karush—-Kuhn—Tucker
(KKT) conditions [114],

20 =K [Lp 1]

1 TK—l 1 TK—ll -1
wP BPaP H (7.18)

+1"K'p 1'K™1 1

From (7.18), a® is determined by n = [Q~ (o) — O~ '(Ry)]B, which means that the
problem to find a good initialization of a® is reduced to finding a good value of .
Furthermore, because (7.18) is derived based on the assumption that ||Aa||, can be
approximated by a constant 8, a¥) is a good initial point if 8 is approximately || Aa*||,,
where a* is the optimal a.

Strategies with side information

From the analysis in the previous section, we can see that attackers can obtain the risk—
distortion curve based on the assumption that the detector uses the fingerprint extracted
from the current frame to compute the detection statistics. However, if the detector knows
that attackers use a linear filter to further reduce the energy of the embedded fingerprints,
the detector will modify the detection statistics to improve the detection performance.
Similarly, if attackers are aware that the detector changes the detection statistics, they will
change their strategy accordingly. Therefore, with side information, there exist complex
dynamics between the attackers and the detector, and the problem can be formulated
as a cat-and-mouse game, in which the optimal strategy for each player depends on
the opponent’s strategy. Because the risk—distortion curve is determined by the optimal
coefficient a*, we consider the optimal coefficient a* as side information to be estimated
by both parties.

In this section, we first discuss how the detector and attackers choose their optimal
strategies based on the available side information. However, given the fact that the cat-
and-mouse game is a game with imperfect information, the detector and attackers are not
always able to apply the optimal strategies. Therefore, later in this section, we discuss
how colluders choose their collusion parameters under the worst-case scenario.

Optimal strategy for the detector

If the detector knows (estimates) that the attacker uses the linear filter with optimal
coefficients a; in the intracopy collusion, the detector will modify the detection statistics
to improve the detection performance. Assume that the detector uses a linear combination
of fingerprints embedded in neighboring frames, W®a, to compute user k’s detection
statistics; then the detection statistics become

al whT (eg + 4 PO W”)) a*

TN/(k) —
' |[W®a]|,

(7.19)
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. . . . T mr (k) *
TN,® follows Gaussian distribution N(ﬁE {%} ; ||A32||2)~ Therefore,

given the false alarm probability Py, = o, colluders’ risk is

T W T ywik) g*
. 0 @)l Aaylly — & E [Fe o
-¢ [[Aa]ls ' (720

Obviously, a rational detector will choose the optimal coefficient a to maximize the

probability to capture colluders, which is the same as colluders’ risk R. According to
aTW(/()TW(k)a;

(7.20), maximizing R is equivalent to maximizing £ [ TWall;

}, which results in
new optimal coefficient a; as

ay = a’,. (7.21)

a

Therefore, if the detector knows that colluders use the linear filter a’ during intracopy
collusion, the detector will also use W a* to compute the detection statistics, as this
can give the best detection performance.

Optimal strategy for attackers with side information

If colluders know that the detector will use the linear filter a}; to compute the detection
statistics, obviously attackers will try to reduce their risk and use a different linear filter.
Let a be the new coefficient that attackers use, then the detection statistics become

a; T WO (es+ ﬁzl{\ilw(n) a

T N//(k) —
' [IW®a% |,

(7.22)

. . . . * Ty (k)T ywik)
TN™ follows Gaussian distribution A/ (ﬁE [%] . ||Aa||2). Therefore,
d

given the false alarm probability Py, = «a, attackers’ risk becomes

_ ﬁTw(k)Tw{k)
O~ '(@)llAall, — ﬁE [adllwu{i)aﬂza}
R=0 4 . (7.23)
[[Aall

Surely, a rational attacker will choose the optimal coefficient a to minimize the risk
defined in (7.23). The problem can be formulated as

* Ty T k)
-1 1 ' W WWa
O (o)llAall; — 7 E {W}

min R = )
a 9 [|Aall
s.t. D=a"Ka < Dy,
17a=1, (7.24)

where Dy is the distortion when a7 is used for collusion.
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Because the Gaussian tail function Q(x) is a monotonically decreasing function, we
can rewrite the optimization problem as

i A WOTW®Oa
a [[WRag[l - || Aally’

s.t. D=a"Ka < Dy,

17a=1, (7.25)
which is equivalent to
£
« Ty (k) T ywik)
ay' W WWa
st S —llAall <0,
[IWag |
D =a’Ka < Dy,
1"a=1. (7.26)
Thus, we can find the solution iteratively by solving the following optimization
problem:
_ayTwhTwihy! 1 1
min S == || Ad ||,
al [IWag |2
st. D= alTKal < Dy,
17al =1, (7.27)
e ;T WOT Wkl g! . . L . D ang
with £0+D = 24 and / being the iteration index. At each iteration, if &' < 0,

T IwW®ay ||| Aally’
the optimization problem in (7.27) is convex, the global optimal solution can be found

using a numerical method. However, if £ > 0, the optimization problem in (7.27) is
nonconvex. Then, we need to use CCCP to find the locally optimal solution.

7.3.3 Min—-max strategy for the attacker: worst-case scenario

Based on the previous discussion, we know the attackers’ and the detector’s optimal
strategies with side information — that is, how the detector and attackers should react
based on the knowledge of their opponent’s strategy. However, in reality, attackers need
to choose their strategy first. Then, the detector will choose a strategy to detect the
attacker. In this game, the best-case scenario for attackers occurs when the detector uses
a fixed strategy that is known to the attacker. In such a best-case scenario, the attackers’
optimal strategy can be found by solving (7.27). Meanwhile, the worst-case scenario
for attackers occurs when the detector has full knowledge of the attackers’ strategy and
choose an optimal strategy based on the attackers’ strategy. In such a worst-case scenario,
the attackers’ optimal strategy is the min—max strategy, to minimize the worst-case
risk.
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7.34 Without additive noise

If attackers use a linear filter with coefficients a, during intracopy collusion and the
detector uses W®a, to compute the detection statistics, then the detection statistics
become

a, T WHT (eg + LM W‘”) a,

mk)
s [IW®Oaqll, 72
Similar to (7.20) and (7.23), the risk of the attackers being detected becomes
_ TWwWET k)
O @)l Aaylls — B |2 N
R=0 . (7.29)

[lAag|l2

Obviously, a rational detector will always choose the optimal coefficients a; to max-
imize the chance of capturing colluders. In the worst-case scenario for attackers, the
detector has the full knowledge of the attackers’ strategy a,. Therefore, when the detec-
tor uses the optimal strategy, the attackers’ risk becomes

_ 1 Tw(/c)Tw(k) .
O @)l Aaylls = 3 B [N |

W Pa
1Al

R(ay) = max (0] (7.30)

Because the attackers know that the detector chooses the optimal strategy based on the
strategy chosen by the attackers, rational attackers will choose the optimal coefficients
a, to minimize their risk in (7.30). Therefore, the problem of finding the optimal a, can
be formulated as

-1 _ 1 a, T WHTW® 5
0 @)l Aaylls = 3 E [

min R(a%) = minmax
o Rlag) = minmax 0 || Al

s.t. D=a,"Ka, < Dy,
17a, = 1. (7.31)
Therefore, the attackers’ optimal strategy in the worst-case scenario is the min—max
strategy.

According to (7.21), we know that the optimal a; equals a,. Let a; = a, = a; then
the optimization problem in (7.31) becomes

I (Q-l(a)nAanz ~ LE [llW(k)a||2]> ’

a

[|Aal
sit. D=a"Ka< Dy,
17a=1, (7.32)
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As with (7.27), we can find the solution iteratively by solving the following optimiza-
tion problem:

min [[W®a'l[, — &'||Aa’| ],
al

T
s.t. D=a" Ka' < Dy,

17al =1, (7.33)

. k L . .
with 41 = % Because &/ > 0, the optimization problem in (7.33) is nonconvex.

Therefore, we need to use CCCP to find the locally optimal solution.

Risk reduction using additive white gaussian noise

Previously, we discussed the attackers’ min—max strategy when colluders do not intro-
duce AWGN into the colluded copy. In this subsection, we consider the scenario in
which the colluded copy is further distorted by AWGN to deter the fingerprint detection
performance.

Assume that after the intracopy and intercopy collusion attacks, colluders introduce
AWAGN to the colluded copy to further reduce their risk of being detected. Then, the
colluded frame ¢ becomes

n

M
=% %[ > axt]+n, (7.34)
k=1

i=—n

where n is AWGN with zero mean and o variance — that is, n ~ N(0, o'2).
In the worst case scenario, similar to (7.28), the detection statistics can be computed

by

al W (es + LM WO 4 n) a
[[W®al|,

TN"® = (7.35)

Similar to the analysis in the previous subsection, we can find the min—max strategy
iteratively by solving the following optimization problem:

min |[W®a'|] — &'(|Aa' |5 + o)),
a’
st. D=a"Ka < Dy,
lTal =1, (736)

_ Iw®al3

S sl
with &' = A E ol

solution.

Because &/ > 0, we need to use CCCP to find the locally optimal
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Parameter estimation

From the preceding analysis, the risk—distortion relationship is determined by three
parameters p, WHOTW®  and K. Now, we study how to estimate these three parameters.
Attackers have no knowledge of either the original source signal S; or the fingerprint
signal W,(k). Instead, they have only the fingerprinted signal Xf]i),,, ey Xﬁlfr)n To obtain
the risk—distortion relationship, we need to first estimate the parameters p, W7 W®)|
and K from Xﬁli)n, ey Xfi),,

Let X® =[x .., x* 1. From (7.1), we can see that the fingerprinted signal is
the sum of the original signal and the fingerprint, based on which the difference between
X® and its smooth version among all the colluders can be expressed as

x® — Z X = Z WO, (7.37)

z 1,i#k

This means that we can use the fingerprinted signal X to compute the correlation
matrix of the fingerprint signal W® by

M

. 1 .
G _ (@)
X i Zx

i=1

M

. 1 .
o _ (i)
X MZX

i=1

M
1
E[WhTwh] = 1 Z E (7.38)

The parameter p can be estimated using

] E[W®OTW®7,
p(i) = o —— (7.39)
S E[WOTW®;

2n+1

where E[W®TW®Y],  is the ith row and jth column element of E[W®TW®)],
To estimate the parameter K, we need to first estimate E[||eg||*] using

Ellles|*)i; = E[Si—n+i — S [Si—ns; — S
0T (k) k) (k)
= EXOT X0 - ExOr X

—n+i“tt—n+j
1+ ExOT x01 — Efw®T W, ;

(k)T (k)
_E[Xt n—HXt n+j
+ E(WOTW®O 4+ EfWOTWO], — prw®TW®O, - (7.40)

Simulation results

We simulate and evaluate the risk—distortion model discussed in the previous sections
on real videos. Two video sequences (Akiyo and Foreman) in quarter common interme-
diate format (QCIF) are tested. We use the human visual model-based spread spectrum
embedding [75], and embed the fingerprint in the DCT domain. We generate independent
vectors of length N = 176 x 144 from Gaussian distribution N (0, 1), and then apply
Gram—Schmidt orthogonalization to produce strictly orthogonal fingerprints. Then, we
scale the fingerprint to let the variance be o2, followed by the inverse Gram—Schmidt
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orthogonalization to ensure that the fingerprint of each user satisfies (7.2) strictly with
y = 0.5. We assume that the collusion attacks are also in the DCT domain. On the detec-
tor’s side, a nonblind detection is performed in which the host signal is first removed from
the colluded copy, and the detector uses correlation-based detection statistics to identify
attackers. In all the following simulations, the parameter # is set to be 5, which means
that the ten temporally adjacent frames are involved in the intracopy attack process for
each attacker. The false-alarm probability is set to be o = 1074

We first evaluate the accuracy of the risk—distortion model by comparing it with the
baseline curve, which is the experimental risk—distortion curve. Here, the experimental
risk is defined as the average positive detection probability by averaging over 400 runs
of simulation. For each video sequence, the number of attackers M = 2 and M = 4 are
tested. As shown in Figure 7.2, the risk—distortion curve derived by the model coincides
with the baseline curve with a small mismatch for both sequences, which demonstrates
the effectiveness of the risk—distortion model. The mismatch comes mainly from the
Gaussian model error for the residue and the parameter estimation error. In the rest of
this chapter, we denote the risk-distortion curve obtained by our model as the absolute
risk—distortion curve.

The convergence performances of the CCCP process are shown in Figure 7.3. From
Figure 7.3, we can see that with CCCP, for any fixed risk constraint, the distortion
converges in a few iterations (fewer than 8 in the examples). Because of page limitations,
we show only the cases in which risk is fixed at 0.05 and 0.2. Similar behaviors are
observed for different risk constraints.

We then study the risk—distortion curve that results when the side information is
available, which we denote as the relative risk—distortion curve. In such a case, the
optimal strategy for the attacker or detector lies on the opponent’s strategy. Based on the
action that the opponent took, the attackers or detector can choose the best response using
(7.21) or (7.27). In Figure 7.4, we show the result of the absolute risk—distortion curve
and relative risk—distortion curve. We start with the absolute risk—distortion curve, which
is obtained using (7.14). Then, if the detector has the perfect knowledge of the attackers’
strategy, the detector chooses the optimal strategy based on the side information. The
resulting risk—distortion curve is denoted as relative risk—distortion curve stage 1. On the
other hand, if the attackers know that the detector uses the side information of the attacker
in previous stage, they will change their optimal strategy accordingly. The resulting risk
distortion curve is denoted as relative risk—distortion curve stage 2. We repeat these
detection and attack processes until stage 5. As shown in Figure 7.4, when the detector
has the perfect side information of the attackers’ strategy, the risk of the attackers to be
detected increases and the risk—distortion curve moves up in the left arrow’s direction.
On the other hand, if the attackers have the perfect side information of the detector’s
strategy, the risk of the attackers to be detected decreases and the risk—distortion curve
moves down in the right arrow’s direction. This phenomenon shows the importance of
the side information. The one who has the perfect side information about the opponent
will lead the game and pull the risk—distortion curve in a beneficial direction.

Moreover, from Figure 7.4, we can see that when the distortion is larger than 1.5, the
relative risk—distortion curve stage 5 curve increases as the distortion increases. This
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Fig. 7.2 Risk—distortion model for Akiyo and Foreman sequences: (a) Akiyo; (b) Foreman

phenomenon is partly because only the locally optimal solution is found using CCCP
when the optimization problem in (7.27) is nonconvex.
In reality, the attackers need to choose their strategy first. In case of a “naive” detector
with a fixed strategy, if the attackers know the perfect side information of the detector,
they can choose their optimal strategy based on the side information. On the other hand,
if the detector is a powerful detector that can always estimate the attackers’ strategy, the
best strategy for the attackers is to minimize the risk of the worst-case scenario — that
is, the min—max strategy. In Figure 7.5, we show the risk—distortion curve with min—
max strategy. We can see that although the risk—distortion curve with min—max strategy

achieves the lowest risk among all the cases in which the detector has the perfect
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Fig. 7.3 Convergence performance of CCCP: (a) M =2; (b) M =4

side information, there is a big risk gap compared with the absolute risk—distortion
curve.

In Figure 7.6, we show the risk—distortion curves with min—max strategy and AWGN.
We can see that as the noise variance increases, the risk—distortion curve moves along
the red arrow direction. This is because when the noise variance increases, the distortion
increases but the risk decreases. We can also see that when the noise variance is equal to
1.5, the risk—distortion curve with min—max strategy meets the absolute risk—distortion
curve for all distortions larger than 2.2. Therefore, with a proper noise variance, we can
reach the absolute risk—distortion curve even with the min—max strategy.
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Fig. 7.4 The absolute risk—distortion curve and the relative risk—distortion curve

Risk—distortion model with min-max strategy
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Fig. 7.5 Risk—distortion curve with min—max strategy
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Risk distortion model with min-max strategy and AWGN
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Fig. 7.6 Risk-distortion curve with min—max strategy and AWGN

Chapter summary and bibliographical notes

Different types of social networks may have different types of side information that
can be employed by the users, which can change the user dynamics. In this chapter, we
illustrated how video fingerprinting in social networks is influenced by the knowledge
of collusion parameters. We first provided a theoretical analysis on the risk—distortion
relationship for the linear video collusion attack with Gaussian fingerprint, and then
analyzed how the colluders and fingerprint detector change their optimal strategies when
side information is available. We conducted several experiments on real video sequences
to verify our analysis. From the experimental results, we could see that if the attackers
have the side information on the detector’s strategy, they can choose the corresponding
optimal strategy to destroy the fingerprint with a small distortion. However, if the detector
is so powerful that it can always estimate the collusion parameters as side information,
the best strategy for the attacker is the min—max strategy. Moreover, we showed that the
attackers can further reduce the risk of being detected by introducing AWGN, with a
cost of larger distortion.

In the literature, little effort has been made to explicitly study the relationship between
risk, such as the probability of the colluders being detected, and the distortion of the
colluded signal. Interested readers can refer to references [65—67,117,118] for the ana-
lytical study on the performance of Gaussian fingerprints under various collusion attacks
and references [110,111] for robust video fingerprinting schemes.
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Game-theoretic modeling of colluder
social networks

As shown in Chapters 5 and 6, cooperation enables users in a social network to access
extra resources from others and thus to receive higher payoffs. Meanwhile, each user
also contributes his or her own resources to help others. However, because the nature of
participation nature in many media-sharing social networks is often voluntary and unreg-
ulated, users’ full cooperation cannot be guaranteed, and a critical issue to be resolved
first is to analyze when users will cooperate with each other and design cooperation strate-
gies. In this chapter, we use colluder social networks in multimedia fingerprinting as an
example, and analyze when users will collaborate with each other and how they reach
agreements.

For a colluder in multimedia fingerprinting systems, the first issue to address is to
decide whether he or she would like to participate in collusion and with whom he or she
would like to collude. When colluders’ goal is to minimize their probability of being
detected, a collusion attack with more attackers reduces the energy of each contributing
fingerprint by a larger ratio and, therefore, each colluder has a smaller chance of being
caught. Thus, to minimize the risk, colluders are always willing to cooperate with one
another because it reduces all colluders’ risk, and a colluder should find as many fellow
attackers as possible.

Nevertheless, colluding with more attackers also means sharing with more people
the reward from illegal usage of multimedia and, therefore, colluders may not always
want to cooperate. Furthermore, to accommodate heterogenous networks and diverse
devices with different capability, scalable video coding is widely adopted, which encodes
the video stream into different layers. In such a scenario, some users may subscribe to
higher-resolution copies of the video, and some users may subscribe only to lower-
resolution copies. Hence, when colluders receive copies of different resolutions, an
attacker also needs to decide with whom to collude. Should the attacker collude with
people who have the high resolution copy, or is it better to cooperate with those who
have the base layer only? It is of ample importance to investigate the conditions under
which attackers cooperate and to study how a colluder selects his or her fellow attackers
to form a coalition. Furthermore, before a collusion relationship can be established, an
agreement must be reached regarding how to distribute risk and reward. Nevertheless,
each colluder prefers the collusion that favors his or her own payoff the most with the
lowest risk and the highest reward, and different colluders have different preferences
of strategies. To resolve this conflict, a critical issue for colluders is to decide how
to fairly distribute the risk and the reward. Therefore, understanding how colluders
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Table 8.1 List of symbols used in this chapter

Set of frame indices encoded in base layer F
Set of frame indices encoded in enhancement layer F,
Set of frame indices of user u’s copy F®
Normalized temporal resolution of u® (|[F®|/(|F,| + |F.|) A
Normalized temporal resolution of a low-resolution copy (| 3| /(| Fp| + | FL)  fo
Lengths of the fingerprints embedded in the base layer Np
Lengths of the fingerprints embedded in the enhancement layer N,
Set of colluders who receive a low-resolution copy Sc?
Set of colluders who receive a high-resolution copy Sche
Total number of colluders (K? + K?%¢) K
Set of frame indices of the colluded copy F.
Normalized resolution of the colluded copy fe

negotiate with one another to achieve fairness of the attack is a must when analyzing
colluder behaviors. Such analysis helps us have a better understanding of multiuser collu-
sion, and offers important guidelines for better design of collusion-resistant multimedia
fingerprinting.

In this chapter, we first investigate the conditions under which colluders will coop-
erate with one another, study how they choose the collusion parameters to ensure that
all colluders increase their payoffs, and analyze how colluders form a coalition to max-
imize their payoffs. We then consider different definitions of fairness and investigate
how colluders share risk and reward “fairly.” One specific property of multimedia data
is that their market value is very time-sensitive. For instance, if the pirated version
of a movie is available right after it is first released, it would have a much higher
market price and, therefore, all colluders have the incentive to mount collusion as
soon as possible. In this chapter, we also address the time-sensitivity of the received
reward in multiuser collusion, and investigate the time-sensitive bargaining among
colluders.

Multiuser collusion game

In this section, we consider the scalable fingerprinting system in Chapter 2, in which
the video stream is divided into two layers: the base layer and the enhancement layer.
Colluders follow the two-stage collusion model in Section 2.3.2, and select the collusion
parameter B to achieve fairness of collusion. Let SC? be the set of colluders who
subscribed to the low-resolution copies and SC” be the set of colluders who possess
the high-resolution copies with both layers. Here, we consider the scenario in which
colluders who receive fingerprinted copies of the same resolution agree to have the
same probability of being detected and receive the same reward. In addition, we assume
that colluders generate a high-resolution copy whenever possible — that is, f, = 1 when
Kb¢ > 1. Table 8.1 lists the symbols that we use in this chapter.
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Game model

We model the colluder dynamics as a bargaining process, in which colluders negotiate
with one another on the fair distribution of the risk and the reward.

* Players: Because colluders who receive fingerprinted copies of the same resolution
agree to have the same risk and same reward, the game can be simplified to a two-
user game. Colluders who receive the low-resolution copies act as a single player,
and colluders who have the high-resolution copies act as a single player during the
bargaining process.

* Strategies: Based on the two-stage collusion model shown in Section 2.3.2, the collu-
sion parameter 8 controls the risk for both SC? and SC?¢ and, thus, their utilities.

e Utility function: For colluder u"”), the payoff function 7*) should contain two terms:
colluder i’s loss of being detected and the colluder’s reward received from illegal usage
of multimedia content. In our game-theoretic framework, all colluders in SC? have
the same payoff 7r°, and all colluders in SC?¢ have the same payoff €.

Utility function definition

In our game, for colluder i, we use the expected payoff as the colluder’s utility function;
the utility function contains two terms, colluder i’s loss from being detected and the
reward received from illegal usage of multimedia content.

As discussed before, the reward depends not only on the colluded copy’s quality, but
also on the time at which the colluded copy is released. In addition, in some scenarios,
the market value of a low-quality copy decreases much faster than that of the higher-
resolution copy. For instance, when a movie is available only in theaters, people might
be interested in the low-resolution colluded copy. Once its DVD copies are for sale on
the market, people might still be interested in the high-resolution pirated copy because
of its low price, but they may have little incentive to purchase a low-resolution pirated
copy. Therefore, to receive higher rewards, colluders should reach an agreement on the
fair distribution of the risk and the reward as soon as possible, and have the colluded
copy ready at the earliest possible time.

Here we use the exponential-decay model for the market value of a colluded copy, and
the reward that player i receives is discounted by a constant factor 8, € (0, 1] for each
round that colluders fail to reach an agreement. Here, the subscript g is the subgroup
index, and is either b or be. That is, the discount factor is 8, when colluder i € SC?
and is 8y, wheni € SC?. In this chapter, we consider the scenarios in which the market
value of the high-resolution copy decays more slowly than that of the low-resolution
one, and assume that §, > §,. When 3§, = . = 1, it corresponds to the scenario in
which the market value of the colluded copy is not time-sensitive and colluders can take
an infinite number of rounds to negotiate.

Therefore, if colluders reach an agreement on the collusion parameter § at the kth
round, colluder i’s utility function is

= =10+ (1= P) (3RO 8.1)
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Here, the subscript £ is the round index and the superscript i is the colluder index. In
(8.1), Pf) is colluder i’s probability of being detected, L@ is colluder i’s loss if he
or she is detected, and R®) is the reward that i receives if he or she is not caught by
the digital rights enforcer and if colluders reach an agreement at the first round. Here,
we consider a simple scenario in which all colluders in the same subgroup has the same
loss term — that is, L&) = L? for all i € SC? and LY) = L% for all j € SC”. In the
following sections, we analyze Pd(i) and R in details.

Probability of being detected P’

Let N, and N, be the lengths of the fingerprints embedded in the base layer and the
enhancement layer, respectively. If all colluders receive fingerprinted copies of the
same resolution and they agree to equally share the risk, with orthogonal fingerprint
modulation, if the detection noise is i.i.d. Gaussian with zero mean and variance anz,
then a guilty colluder i’s probability of being detected is

h — \/ﬁcow/[() ’ (8.2)

=00
and the probability of accusing an innocent user is P(?a) = Q(h/o,). Here, O(-) is the
Gaussian tail function, /4 is a predetermined threshold, V. is the length of the fingerprint
Y extracted from the colluded copy, and o is the variance of i’s fingerprint W,
N, = N, if the colluded copy contains the base layer only, and N, = N, + N, when the
colluded copy is of high resolution with both layers. The superscript s denotes that all
fingerprinted copies in collusion have the same resolution.

Because the scalable video coding is applied, colluders may receive fingerprinted
copies of different resolutions — some colluders receive copies with the base layer only,
and some colluders receive both the base layer and the enhancement layer. In such a
scenario, from the analysis in Chapter 5, with orthogonal fingerprint modulation, if the
colluders colluders in the same subgroup (receive the same-quality copies) agree to
share the same risk and the detection noise is i.i.d. Gaussian A (0, anz), for colluder i
who receives a low-resolution fingerprinted copy, the chance of being captured is

h — ﬂmaw/K>

On

b
Pi.=0 ( (8.3)
where f is the collusion parameter and the superscript b indicates that colluder i is the
subgroup SCP. If colluder i is innocent, his or her chance of being falsely accused is
Py = 0(h/oy).

For user i who receives both layers from the content owner, the self-probing detector in
Chapter 6 has approximately the same performance as the optimum fingerprint detector
with perfect information about the statistical means of the detection statistics. Therefore,
during collusion, attackers should consider the worst-case scenario and assume that the
fingerprint detector can always select the optimum detection statistic with the largest
mean.
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For colluder i, following the analysis in Chapter 6, the probability of being detected
is
i h — Mbe
#eo52)
Gn

A
where  wpe = max{ul,, ué,, us,} fori e SC*,

_U=PBVNy . VN

where Mll;e = e Ow, Mpe = Fow,
and Moo = he SNy TN, O (84)

To determine colluder i’s probability of being detected, we need to first analyze the
relationship between 8 and .. Following the same analysis as in Section 6.3.2, there
are three possibilities.

* Case 1, jup, = p1%,: This happens if and only if 15, > u¢,, and u2, > us,, thatis,

VNe Ne }
Ny /No(v'Ny + N — /Np)

/ N N, + N - o /Ne N, _
Note that Nb + /N, > Nb + Ne, that 18, VN < m Thus, MUpe =
wb, if and only if

(1 —B) = max { (8.5)

N,
0<pg<l- . (8.6)
v Np(/Np + N, — «/Np)
However, note that
1 Ne _VNbVNb+Ne_Nb_Ne
VNy(WNy + Ne = /Np)  /No(/Ny + No — +/Np)
_VNb+Ne(VNe_VNb+Ne) <0 (87)

VNo(v/Ny + Ne — /Np)

Hence, for all N, > 0, 12, cannot be the largest among the three, 117, 1§, and ¢,
and scenario 1 can never happen.

* Case 2, iy, = 5, This scenario happens if and only if u$, > %, and u§, > us,.
That is,

SR BT ), 55

VN’ Np
Using the same analysis as in (8.6), the necessary and sufficient condition for case 2
is:

(l—ﬁ)fmin{

N.(s/N, N, — /N,
e = i, 5 pr21 - PRI RN gy g9
b
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¢ Case 3, up. = 1j,: Using the same analysis as above, the necessary and sufficient
condition for case 3 is

NN, ¥ N, = VN,)
Np '

Ube = M5, & 0<B<pt =1 (8.10)

To summarize, if colluder i receives a high-resolution copy and participates in
collusion, his or her chance of being detected is

h 1-B)Ny+N, o, .
O (L - Ghpke o), if p<pt,

Pl =
< h Nc w 1
(L -2, if p> Bt

(8.11)

Here, the superscript be indicates that colluder 7 is in subgroup SCPe. If user i is
innocent, then the probability of falsely accusing him or her is P(’(z = Q(h/oy).

Reward R?

In this chapter, we consider the scenario in which colluders receive more reward from the
illegal usage of multimedia when the colluded copy has higher resolution. For instance,
the pirated video with DVD quality would have higher value than the video with VCR
quality. With temporal scalable video coding, we use the frame rate to quantify the
video quality. Therefore, the reward function R® is an increasing function of f., the
normalized temporal resolution of the colluded copy. In addition, when colluders receive
fingerprinted copies of different resolutions, we consider the scenario in which colluders
distribute the reward based on the resolution of each contributing copy, and an attacker
receives more reward if he or she contributes a copy of higher resolution. This is because,
if colluders in SC?¢ do not participate in collusion, the quality of the colluded copy and
the total received reward will be lower. Thus, we let R‘) be an increasing function of
f®, the normalized resolution of the fingerprinted copy from colluder i. Furthermore,
some colluders may wish to receive a higher reward at a cost of higher risk, and we also
let R¥) be a nondecreasing function of Pf).

Based on this discussion, the reward function we use is

poro(e)
Zj’?zl (fD) D (Pd(/)>

Here, 0 is a parameter to address the tradeoff between the risk that a colluder takes and
the reward that he or she receives, and it has a smaller value when colluders place more
emphasis on risk minimization. & = 0 corresponds to the scenario in which colluders’
only goal is to minimize their risk, which has been well studied in the literature. In
(8.12), y = 0 is a parameter that colluders use to adjust how they distribute the reward
based on the resolution of each contributing copy. For example, if y = 0, then the
reward is distributed equally among colluders with the same quality copies. For colluder
i € SC* who contributes a high-resolution copy, R is an increasing function of y and

RO —

(8.12)

colluder i receives more reward when y takes a larger value. D (P;i) ) is anondecreasing
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function of Py) and allows colluders who take a higher risk to receiver more reward
from collusion. The denominator in (8.12) is the normalization term.

In (8.12), when all colluders receive fingerprinted copies of the same resolution, the
reward function is R®) = £.0/K — that is, colluders equally distribute the risk as well
as the reward among themselves. When D(Pd(i) ) = 1 for all colluders, the total reward
is distributed among colluders based only on the resolution of the fingerprinted copies
they contribute, but not on their risk. In such a scenario, if the colluded copy has high
resolution and f. = 1, colluder i’s reward can be simplified to

20— (f Dy '
KP(fy) + K
To summarize, we model the colluder dynamics as a bargaining process, wherein

colluders in SC? and SC?¢ negotiate on the selection of the collusion parameter . For

colluder 7, the utility function is defined in (8.1), and the reward function that we use is
in (8.12).

(8.13)

Feasible and Pareto optimal collusion

In the following, we first study when colluders will cooperate with each other; this section
analyzes the feasible region and the Pareto optimal set. In this section, we consider the
scenario in which the market value of the colluded copy is not time-sensitive and
8y = 8pe = 1, and we let D(P.") in (8.1) equal to 1 for all colluders. In this simplified
colluder game, when colluders receive fingerprinted copies of the same resolution, all
colluders have the same payoff,

/.0
K 9
where PS5 is in (8.2). In (8.14), L = L® when f¢ = f, and the colluded copy has low

resolution, and L = L?¢ when f, = 1.Ifcolluders receive copies of different resolutions,
colluder i ’s utility function is

7 ==PyL+(1-P)) (8.14)

(/%)
Kb(fo) + Kbe ™
where Pf_ isin (8.3)ifi € SC’ and P§, isin (8.11) if i € SC". Here, the superscript
g is the colluder subgroup index, and it is either b if i € SC? or be if i € SC*.

w8 = —P§ LE+ (1 - P§.) (8.15)

d,c

Feasible set

Given an N-person general-sum game, there is a certain subset S of RV, called the
feasible set. It is feasible in the sense that, given any (1, 72, ..., Ty) € S, it is possible
for the N players to act together and obtain the utilities 7y, w3, ..., Ty, respectively.
From the preceding analysis, for a given 8, we can calculate the payoffs 7) as in (8.15)
for all colluders. From the definition of the payoff function, colluders who receive fin-

be

gerprinted copies of the same quality have the same payoff, and 7 and 7% are the
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Fig. 8.1 Example of the feasible set

payoffs for colluders in SC? and SC?°, respectively. Figure 8.1 plots 7” versus 7%¢,
and the feasible set is the solid line. In Figure 8.1, the straight line segment corre-
sponds to scenario 2, in which pp = uj, = g and is independent of 8. Therefore,
when B > B*, b€ remains the same while 7® keeps decreasing as $ increases. Simi-
larly, the curve segment in Figure 8.1 corresponds to scenario 3, with 0 < 8 < 8% and

b¢ in an increasing function of B, and 7® decreases as

Hbe = M5,. In this scenario, 7
increases.

Pareto optimality

Among all possible solutions in the feasible set, attackers are especially interested in
those in the Pareto optimal set ST C S. A solution is Pareto optimal if no one can
further increase his or her utility without decreasing others’. Players would always like
to settle at a Pareto optimal outcome, because if colluders select a point that is not Pareto
optimal, there exists another solution for which at least one player can have a larger
payoff without hurting other players. Therefore, the player who can achieve a higher
payoff without hurting others’ has the incentive to push other players to deviate from
the non—Pareto optimal solution. In addition, the other rational players will agree with
this player, because their own utilities are not influenced. Pareto optimal solutions are
not unique in most cases. In this subsection, we investigate the Pareto optimal solutions
in the colluder social network and analyzes the necessary and sufficient conditions for a
point to be Pareto optimal.

* Necessary condition: For a point in the feasible set to be Pareto optimal, decreasing ji;
and increasing 7% must result in a larger pp. and a smaller €. Note that from (8.4),
Wp 1s an increasing function of 8. Thus, if a point is a Pareto optimal point, (i, must
be a decreasing function of 8, which happens only when ps. = uj,. Consequently, if
a point is Pareto optimal, 8 must satisfy (8.10), and (8.10) is the necessary condition
for Pareto optimality.
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* Sufficient condition: If 1y, = uj,, to increase the payoff of the colluders in SCPbe,
colluders must select a larger 8 and decrease j5.. However, a larger 8 implies a larger
Wy, and thus a smaller 7”. Consequently, those points that satisfy (8.4) are Pareto
optimal points, and (8.4) is the sufficient condition for Pareto optimality.

To conclude, the multiuser collusion is Pareto optimal if and only if up. = uf, and
(8.4) is satisfied, which corresponds to the curve segment in Figure &.1. Mathematically
speaking, the Pareto optimal set corresponds to the solutions in which attackers select
0 <B<pTthatis, St = {(n’,7*)eS:0< B < p*}.

Feasible collusion

Attackers will collude with one another if and only if collusion helps increase their
utilities, and they are interested in solutions in the Pareto optimal set S* that give them
higher payoffs when compared with the scenario in which they do not cooperate with
each other.

* First, if attacker 7 does not participate in collusion and does not use multimedia content
illegally, his or her payoff is zero. Thus, attacker i colludes with other attackers only
if he or she receives positive payoff from collusion, and colluders are interested only
in solutions in ST where 7® > 0 and 7%¢ > 0.

* Furthermore, one possible outcome of the bargaining between SC? and SC?¢ is that
they do not reach an agreement. In such a scenario, attackers will collude only with
their fellow attackers in the same subgroup, and SC? and SC?¢ do not cooperate
with each other. Let 2, denote the utility of a colluder in SC? if he or she colludes
with attackers in SC? only, but not those in SC?¢; and similarly, 72¢ is the utility of
an attacker in SC?¢ if he or she colludes with attackers in SC”¢ only, but not those
on SC?. Here, the subscript #c means no cooperation. Therefore, SC? and SC?¢ will
collude with each other only if the two-stage collusion increases both players’ payoffs,
and they look for solutions in S* where 7” > 7 and 7%¢ > 7’¢.

This analysis helps colluders further narrow down the feasible set to

A
= max(?

S, = {(nb, yeS:0<p<pt.al>xt 2., 0),

7 > gbe 2 max(zt, 0)} . (8.16)

nc?

When to collude

In this section, we analyze when attackers will collude with other attackers and discuss
the minimum and the maximum numbers of colluders that make the collusion attack
feasible and Pareto optimal. We also provide the optimal size of the social network that
maximizes every user’s utility. In this section, we consider the scenario in which L® = 1
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for all i € SC and D(-) = 1. The analysis for other scenarios is similar, and the same
methodology can be used.

Single-resolution collusion

We first study how colluders form a coalition when all of them receive copies of the
same quality.

Colluders’ utility functions

As an example and without loss of generality, we assume that all attackers receive
high-resolution copies with both layers, and they generate a colluded copy of high
resolution; that is, K = K% and f. = 1. The analysis is similar for the scenario in
which all fingerprinted copies have the base layer only and thus, that scenario omitted.
In such a scenario, because all copies have the same resolution, there is no bargaining in
collusion, and attackers simply average all copies that they have with equal weights. From
Section 8.1, colluder i’s utility function is

7 =P+ (1-P)) =
; h— Ny F Noow/K
where P = Q( b+ Neow/ ) (8.17)
oy

Figure 8.2 shows an example of 7() versus the total number of colluders K. In
Figure 8.2, the lengths of the fingerprints embedded in the base layer and the enhancement
layer are N, = 50000 and N, = 50000, respectively. In Figure 8.2, we use 6§ = 50 as
an example to illustrate colluders’ payoffs, and we observe similar trends with other
values of 6. 02 = 02 = 1 and / is selected so that the probability of falsely accusing an
innocent is Py, = 1073 in Figure 8.2(a) and Py, = 10~ in Figure 8.2(b) and (c). From
Figure 8.2, when there are only a few colluders, 7¥) < 0 because of the high probability
of being detected. For example, in Figure 8.2(a), colluders receive a negative payoff
when K < 126. In this scenario, colluders may not want to use multimedia illegally, as it
is too risky. Furthermore, from Figure 8.2, colluding with more attackers does not always
increase a colluder’s payoff, and in Figure 8.2(a), 7") becomes a decreasing function of
K when there are more than 206 attackers.

Let Ko = {K:7O(K —1) <0,79(K) > 0} be the smallest K that gives colluders
a nonnegative payoff. Attackers will collude with one another if and only if there are
more than K colluders and when they receive positive payoffs from collusion. Also,
we define K, £ argg - g, Max 7® as the optimum K that maximizes colluder’s utility
when all attackers receive copies of the same resolution. A colluder should find a total of
Ky attackers, if possible, to maximize his or her payoff. In the example in Figure 8.2(a),
Ky =126 and K,,,, = 206. In this section, we analyze K, and study when attackers
will collude with each other. We will analyze K,,,, in Section 8.6 and study the optimal
number of colluders that maximizes their payoffs.
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8.3.1.2  Analysis of the minimal number of colluders
Given N, N,, and 0, to find K, we solve the equation

2K) = —0 h — Ny + Neoy, /K
On
h—+/Np+ N K 0
“F[l_Q( b+ Neow/ >:|=0,
oy K
h—/Ny+ N, K 0
or equivalently, O b+ Neow/ = . (8.18)
o K+0
Define x = 1/K as the inverse of K. Then (8.18) can be rewritten as
h— Ny + N, 1
0 b NeOwX N (=)= 1— — (8.19)
oy 14+ 6x

where a = h /o, and by = \/Nj, + N.0,,/0,. Note that K > 1 is a positive integer. To
gain insights into K, we first extend the support region of K from positive integers
to positive real numbers, find the solution x* to (8.19), and then let Ko = [1/x*].
Consider the example in Figure 8.2(a) where N, = N, = 50000, 02 = 02 = 1,6 = 50,
and Pr, = 1073, The numerical solution to (8.19) is x* = 0.00798 and Ky = [1/x*] =
126, which agrees with our exhaustive search results.

Figure 8.3 shows K| for different values of 6 and f.. The system setup in Figure 8.3
is similar to that in Figure 8.2(a). Figure 8.3 suggests that K is a decreasing function
of 6. As an example, when f. = 1, K drops from 235 to 103 when 6 increases from
10 to 100. In addition, from Figure 8.3, K, takes a smaller value if colluders generate
a colluded copy of lower resolution. For example, with 6 = 50, Ky = 126 when f, = 1
and Ky = 100 when f, = 0.5.



8.3.2

8.3.2.1

8.3 When to collude 143

Multiresolution collusion

Next, we consider the scenario in which colluders receive fingerprinted copies of different
resolutions, analyze when attackers will collude with other attackers with different-
quality copies, and investigate how an attacker selects fellow attackers to maximize his
or her own payoff.

In Section 8.2.3, multiuser collusion is modeled as a two-player game, in which the two
subgroups of colluders, SC? and SC?¢, negotiate with each other to reach an agreement
on fair distribution of the risk and the reward. To understand the complicated dynamics
among colluders, the first step is to analyze S, and to investigate under what conditions
attackers will collude with each other.

Colluders’ payoff functions
From Section §.2.3, one possible outcome of the bargaining between SC? and SC?® is
that they do not reach an agreement. In such a scenario, attackers collude only with their
fellow attackers in the same subgroup, and SC? and SC? do not cooperate with each
other. Given Ny, N,, K?, and K", if an attacker in SC? colludes only with those in SC?,
following the same analysis as in Section 8.2, his or her utility is

Tpe = = Pine + (1= Piuc) Ry

nc

h «/NbO’
b w b
where PJ,. =0 <Gn = Ko, ) =0 (a—by/K")
0
and R’ = g (8.20)

In (8.20),a = h/o, and by, = / Npo,/0,. Similarly, if an attacker in SC?e colludes only
with those in SC?¢, his or her payoff is

”;?f = _P;;c + (l - P;;c) Rrbrg
h  &/Np+ Neo
be __ _ e~ w _ _ be
where P)5. =0 (Gn Kb, ) =0 (a —by/K")
0
be __
and R, = Koo (8.21)

In (821), bs = Nb + Neow/an-
If SC? and SC?¢ collaborate with each other and select the collusion parameter S,
following the analysis in Section 8.1, for an attacker i € SC?, his or her utility is

n’=-P) +(1-P)) R,
h VN, o b
where Pfyc,:Q(—ﬁ b.a)zg(a_lgb>

o, Kb o,

p_ ()8
and R = Ko (foy + Kbe (8.22)
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Similarly, for 0 < 8 < %, an attacker i € SC?¢’s payoftf is
m’ = —P) + (1 — PJ°) R%, where

h (1 - ﬂ)Nb + Ne Oy bs bbe
phe — oo FF T e Tw) _
de =@ (o,, TN S A G &

0
Kb(fc)y + Kbe’

and R% = (8.23)

_ Npoy
In (823), bbe = m.
From Section 8.2.3, among all the possible solutions {(nb, nbe)} in the feasible set
S, colluders are interested only in those in
S, = {(nb, 7% e S 7t > 7® = max(0, n,fc),

7’ > 7’ =max(0, 7)), 0 < B < BT}, (824

where cooperation helps both SC? and SC”¢ increase their payoffs.

* From (8.22), Pa[{c is an increasing function of B and, therefore, 7” is a decreasing

function of 8. Let B be the B that makes ® equal to ®; that is, 7°(8) = x”. Then,
the constraint 7% > 7® is equivalent to letting 8 < S.

¢ Similarly, from (8.23), P(be) is a decreasing function of 8, and thus 77 is an increasing
function of 8. Let B be the B that makes 7% equal to 7”¢; that is, 7"*(8) = .
Therefore, the constraint 77¢ > 7€ is equivalent to selecting B =8

* Furthermore, if we compare (8.21) and (8.23), P} = PJ_ when B = 0. That is, if
colluders select 8 = 0, then collaborating with SC? does not help SC?¢ further reduce
their risk of being detected. Meanwhile, R* < R?¢ and colluders in SCbe receive
a smaller reward if they cooperate with SC?. Consequently, 7°¢(0) < %¢ < nt¢ =
max (72¢, 0) = 7%¢(B). Thus, B > 0, because "¢ is an increasing functlon of B.

nc?

From this analysis, we can rewrite S, as

Sp={@" 7" eS:p<p <min(B, B7)}. (8.25)

When attackers receive fingerprinted copies of different resolutions, the two subgroups
of colluders SC? and SC?¢ will collude with each other if and only if there exists at least
one B suchthat 8 < 8 < min(B, BT), or equivalently, when S, is not empty.

Lower and upper bounds of the collusion parameter
To further understand under what conditions SC? and SC?¢ will cooperate with each
other, we will first analyze 8 and f.

From the previous discu;sion, given Ny, N,, K?, and K%, colluders should select 8
such that

7’(B)=—P).(B)+ [1 — P} (B)] R? > n” = max (0, 7). (8.26)
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where Pj .(B) and R’ are in (8.22). Consequently, we have

b _ Bby R([;’ - lb
Py ()= 20 (a - Kb) < Rl (8.27)
Because Q(x) is a decreasing function of x, therefore, we have
bh . Rb _ lb
a—poz =07 (5 ).
K? RV +1
~ R —7b\7 K?
or equivalently, B <pB= [a - 0! (1;2)_'_1)} B (8.28)
Similarly, given N, N,, K?, and K%, colluders should select 8 such that
7P(B) = — P (B) + [1 — PL(B)] R > x = max (0, 7%¢) , (8.29)
where PJ%(B) and R are in (8.23). Therefore, we have
Ny + Noow,  Bbpe\ _ R —mbe
Pie(p) = 0 (a— Yo X ReOw Pl Ko — 27
’ K'eo, Kbe Rbe 41
Rbe _ n,be /Nb T Noo Kbe
. _ 1 c T eQw
or equivalently, 8 > 8 = [Q (RC”@+1> —a+ Kb@on} b
Nb + Ne i R?e _ lbe Kbe
= — —— | = . (830
Ny +{Q (Rge+1 4 G B30

Figure 8.4 shows examples of B and B. The simulation setup is similar to that in
Figure 8.2(a). K%¢ = 120 in Figurg8.4(a), and K® = 50 in Figure 8.4(b). From Figure
8.4(a), B < B when K? < 9, and B > B+ when K® > 358. Therefore, in this example,
where K% is fixed as 120, S, # ¢ if and only if 9 < K? < 358. Similarly, from Figure
8.4(b), B > B if K" < 94 or Kb > 207. Thus, when K” = 50 is fixed, SC* and SC?
will collude with each other if and only if 94 < K be < 207.

8.3.2.3  Analysis of the number of colluders
From Figure 8.4, given Nj, N,, and 6, for some pairs of (K?, K%¢), S, may be empty

and thus, SC? and SC?¢ will not cooperate. Define Kpé {(K?, K"):S, # 0} as the
set including all pairs of (K?, K”¢) where S, is not empty and where SC? and SC*¢ will
collude with each other.

Given N,, N, and 8, SC? and SC?¢ will collude with each other if and onlyif S, # -
that is, when 8 < BT and B < . Because "¢ in (8.23) is an increasing function of ,
if B < B*, then we have

m(BY) = =Pl + [1 — Py(BT)] RY = nt(B) = n™*,

0 n.be + Pbe, +
or equivalently, R’ = - > = bi'c(ﬂ ). (8.31)
Ko(fe) + Kb 1= P/(BF)
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Consequently, to ensure 8 < g%, (K b K"¢) must satisfy
0(1-Phpn) K™

(e + PIBD) (o) ()

From (8.28) and (8.30), to ensure B < f8, (K", K%¢) must satisfy

Ny + Ne 3 Rl?e _ nbe Kbe
:8 — b T e + Q 1 Cb; —a
- N, Rce +1 bpe

b b b
<f= {a ~ 0! (R_”ﬂ 1;7' (8.33)

KP < KY(KP) & (8.32)
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Combining (8.32) and (8.33), we have

9 (1 _ Pbe (IBJr)) Kbe
K, = {(K" k") : K® G A
=1 R T AT (VAR AT

Nb + Ne . Ré?e _ lbe Kbe . R? _ lb Kb
e o (=) —4 <la—o (=== = 1.
N, Rbe + 1 bpe R0+ 1 by

(8.34)

The shaded area in Figure 8.5(a) shows an example of K,. At point A in Figure 8.5(a),
when K%¢ < 91, no matter which value K° takes, S p is always empty and attackers will
not collude with one another. Similarly, when K%¢ > 226 (point B in Figure 8.5(a)), no
matter how many attackers are in SC® and how they select 8, cooperation between SC”
and SC? cannot improve all colluders’ payoffs. Furthermore, when K? > 431 (point
C in Figure 8.5(a)), SC® and SC”¢ will not collude with each other. In addition, when
125 < K% < 226, (Kb =1, Kbe) is in the feasible region K, and the lower bound of
K? is 1. To quantify these boundary points of K,, we define

K" = min {K" : 3K? st (K", k) € K, },
R £ max {K" : 3K" st (K®, k") € K, },
and K® 2 max {K”:3K" st (K*, K") e K,} . (8.35)

In the example in Figure 8.5(a), K?¢ = 91, K?* = 226, and K® = 431.

Figure 8.5(b) and 8.5(c) show the feasible region K, when 6 = 150 and 6 = 10,
respectively, where we observe the same trend as in Figure 8.5(a). In addition, when
0 takes a smaller value and colluders place more emphasis on risk minimization, they
prefer to collude with more people to reduce their risk of being detected, and more
colluders join the coalition. This is similar to the single-resolution case.

From Figure 8.5 and (8.35), if K? > K?, K?* < K%, or K?* > K", then it is impos-
sible to find a 8 that increases all colluders’ payoffs, and SC? and SC”¢ will not cooperate
with each other. Therefore, during collusion, as a preliminary step, colluders should first
check that K? < K? and K* < K"¢ < K. Then, they should ensure that (K”, K"¢) is
in the set K, defined in (8.35), and guarantee that there exists at least one § that increases
both SC? and SC?¢’s payoffs. In the following, we analyze the boundary points of K »
(K¢, K and K?) in detail.

e K%¢: Using an exhaustive search, we find that at point A in Figure 8.5(a), K® = 56
and K% = 91. Because K’ < Ko(f. = f;) = 100 and K?* < Ko(f, = 1) = 126, we
have 72 < 0, 7%¢ < 0, and 7" = 7 = 0. To have a better understanding of K¢,
Figure 8.6 plots g and B around the point (K? = 56, K* = 91). As can be seen
from Figure 8.6, at point A, 8 = B = pt, and S, has only one item, which is S, =
{(nb, %) p = ,3+}. From the analysis in Section 8.3.2.1, 7%¢ = 7%¢ when g = B,
and 7° = 7 when B = . Therefore, at the boundary point A, (K?, K%¢) satisfies

ﬂb(Kb, [{be7 '3+) — lb — 0’

(8.36)
T[be(Kb, Kbe’ ﬂ+) — lbe = 0.
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Fig. 85 An example of K,. N, = N, = 50000 and the probability of falsely accusing an
innocent user is Py, = 1073
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To find K”, we should first find the solution (K, K%¢) to (8.36) and then select K¢ =
[K"¢]. Using Figure 8.5(a) as an example, given the parameters N, = N, = 50000,
Yy =1/3,0 =50 and Py, = 1073, we first find the solution to (8.36) numerically,
which is (K? = 55.88, K?¢ = 90.15). We then calculate K" = [K"71 =91, which is
consistent with the result we find using an exhaustive search.

e K" To analyze K", using an exhaustive search, we find that at point B in Figure
8.5(a), K =1 < Ko(f. = f3) = 100 and K¢ =226 > Ky(f. = 1) = 126. There-
fore, at this point, 7” = 0 and £” = 7% > 0. As shown in Figure 8.7, at this point,
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B= B, and S, = {(nb, ) B = B= B} has only one entry. Also, from Figure
8.7(b), when K¢ = K’ if SC® has more than one attacker (that is, K® > 2), there is
no B that can improve both SC?¢ and SC?’s payoffs. Therefore, point B corresponds to
the scenario in which K? = 1, K”* = K% and g = B. Thus, from (8.28) and (8.30),
to find K%, we first solve N

5 Ny + N, n Q71 Rfe _ nfg Kbe
b Ve Te T lne ) a0 2
= Ny Rbe +1 bpe

- R? 1
[0 ()] &

and then let K% = [ K%¢]. In (8.37), R = 0/[(f»)” + K1, R® = 0(1,)" /[(f»)" +
K", and yr,’,’f isin (8.21). As an example, given the system setup in Figure 8.5(a), the
numerical solution to (8.37) is K?¢ = 226.64 and thus K® = [226.64| = 226. It is
consistent with the result we found using an exhaustive search.

e K’: Atpoint C in Figure 8.5(a), we find K? = 431 and K¢ = 125 using exhaustive
search and 8 = B, as shown in Figure 8.8. From the analysis in Section 8.3.2.3, for
a given K¢, to satisfy the constraint 8 < B+, it is required that K® < K*', where K*'
is defined in (8.32). Therefore, we have K? = |maxg+ K? |. Using the system setup
in Figure 8.5(a) as an example, Figure 8.9 plots K* versus K¢, and K”' achieves a
maximum of 431.88 when K%¢ = 125. Consequently, K” = [431.88] = 431, which
agrees with the result we found using an exhaustive search.

To summarize, given N, N,, and other parameters including 6 and y, to ensure
that cooperation can help both SC? and SC?¢ improve their payoffs, colluders should
first follow the preceding analysis to find K?¢, K%¢, and K”, and ensure that K” <
Kb < K% and K% < K?. Then, attackers should further check whether (K b K b")
satisfies the constraints in (8.34) and whether S, is not empty. If (K°, K*) € K,,
colluders should use (8.28) and (8.30) to calculate B and B, respectively, and find
Sp = {(n’, 7"): B < B < min(B, B*)}. By doing so, no matter which pair (", 7€)
that colluders select in S, it is a Pareto optimal solution and all colluders increase their
payoffs by cooperating with one another.

How to collude: the bargaining model

The previous section analyzes when colluders should form a coalition. In this section,
we discuss how colluders bargain with one another and reach an agreement. We model
the colluders’ bargaining process as follows:

* In the first bargaining stage, SC?¢ offers the collusion parameter B that uniquely maps
to the utility pair (77, 77¢) in the Pareto optimal set.

* On receiving the offer, SC? has the choice to accept this offer and gets the payoff 7,
or to reject it and offer back B, which corresponds to another payoff pair (72, 72¢) in
the Pareto optimal set.
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e If SC? decides to offer back, SC¢ again has the choice to accept the offer (nzb , né’e)

or offer back.

¢ This bargaining process continues until both groups of colluders agree on one offer.
Each time a subgroup rejects the offer and the negotiation process goes to the
next round, the rewards that SC? and SC?¢ that receive are decayed by §; and 8.,

respectively.

In this model, SC? makes an offer first and takes the advantage of the first move.
This is because, without SC?¢, colluders in SC® can generate only a low-resolution
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colluded copy with much lower reward, and thus, SC’® has more bargaining power
than SC?.

Given this bargaining model, we first consider the scenario in which the reward
received from collusion is not time-sensitive and in which colluders can use an infinite
number of rounds to reach an agreement. We then consider time-restricted bargaining,
in which the reward decays as the number of bargaining rounds increases. For these
two different scenarios, we discuss how colluders reach an agreement and find the Nash
equilibrium of the colluder bargaining game.



8.4.1

8.4 How to collude: the bargaining model 153

500 T T T T T T T

~—Kbe_125 K - 431.88

400
300 -
< 200t

100 -

_1 00 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Kbe
Fig. 8.9 K" versus K. N, = N, = 50000, af, = anz =1y=1/3,Pr, = 1073, and 6 = 50

Fair collusion with non—time-restricted bargaining

We start with the simple scenario in which the reward received from illegal usage of
multimedia is not time-sensitive — that is, both 8, and &, are equal to 1. In such a
scenario, colluders will bargain until both groups are satisfied and the selected collu-
sion is fair to all colluders. Depending on the definition of fairness and the objectives
of collusion, colluders select different collusion strategies. In this section, we con-
sider four commonly used fairness criteria and demonstrate how colluders achieve fair
collusion.

Absolute fairness: The most straightforward fairness criterion is absolute fairness,
under which all colluders have the same utility. That is, it selects (”, 7%¢) € S, that
satisfies

Taps = 0 = 7P, (8.38)

Even if S, is not empty, it is possible that the absolute fairness solution does
not exist — that is, there is no pair (7%, 7%¢) € S, where 7 = 7%. As an exam-
ple, consider the system setup in Figure 8.5(a), where N, = N, = 50000. When
(K?, K?¢) = (60, 95), following the analysis in Section 8.3.2.2, B should be in the
range [0.5308, 0.5858], which gives 0.0454 < 7® < 0.1084 and 0 < 7%¢ < 0.0390. In
this example, even though S, # @, max(7”¢) < min(x®) and, therefore, the absolute
fairness solution does not exist. In this scenario, colluders should consider other fairness
criteria.

Max—Min fairness: To guarantee the minimum payoff that a colluder can receive by
participating in collusion, colluders might choose to maximize the minimum utility over
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all colluders. For our two-player colluder game, the max—min fairness solution is

Tmaxmin = MaxX min (ﬂb, ﬂbe) . (839)

(7‘[”,7‘[’”’)68,,

Max—sum fairness: With the max—sum fairness criterion, colluders select the 8 in
the Pareto optimal set S, that maximizes the summation of all colluders’ utilities.
Mathematically, the max—sum fairness solution can be formulated as follows:

Tmaxsum =  Max 7@ = KPrb 4 Kberte. (8.40)

(et mNESy [ o5e

Nash bargaining solution: The Nash bargaining solution is a famous bargaining
solution in game theory. Mathematically, the general Nash bargaining solution selects
(nb, %) € S, that maximizes

g(]Tb, nbE) — (T[b _ lb)ah (JTbe _ lbe)”bl’ , (841)

where a;, and ap, are the bargaining powers of SC?, SC?, respectively. Here, as defined
in (8.24), 7’ and 7% are the payoffs for SC? and SC?¢, respectively, when the two
subgroups fail to reach an agreement and do not cooperate with each other. When
ap = ap. = 1, the Nash bargaining solution divides the additional utility between the
two players in a ratio that is equal to the rate at which this utility can be transferred. If
ap # ape, then the bargaining solution deviates from the proportional fairness solution
and favors the player with a higher bargaining power.

Time-restricted bargaining

For time-restricted bargaining with 0 < 6, 85 < 1, the reward that colluder i receives
from collusion decays by a constant factor every round that colluders fail to reach an
agreement. Thus, the feasible set and the Pareto optimal set change every time colluders
must go to the next bargaining round. Figure 8.10 illustrates the feasible regions of this
bargaining process. In Figure 8.10, SC** =250, SC* =100, and Py, = 107>. The thin
solid line is the feasible region that the colluders can choose before the bargaining process
starts, the wide (circled) line and the dashed line are the feasible regions after the first
and the second rounds, respectively. As can be seen from Figure 8.10, when colluders
take more rounds to reach an agreement, the utilities that they receive from collusion are
smaller. Thus, to maximize their payoffs, colluders should finish the bargaining process
as soon as possible, ideally in the first round.

Assume that colluders reach an agreement at the kth stage. Colluders seek the utility
pair (Bx € S,, Br+1 € S,) thatis stationary, which are the bottom lines of the two players.
Here, By gives (7}, w{°) in stage k, and By gives (mf, |, (¢, ) in stage k + 1. In this
game, the stationary strategy for SC? is to offer )¢ to subgroup SC* whenever it is
its turn to act, and to accept any offer larger or equal to 7} 1~ Similarly, the stationary
strategy for SC?¢ is to offer 7} to SC® whenever it is its turn to act, and to accept any
offer larger or equal to /¢ .

For an equilibrium, if SC?¢ acts in stage £, its offer, 7 should be large enough that
SC? will accept, but not larger. On the other hand, SC? should accept the offer 7} if it
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is not smaller than 7} 1> Which is SC b’s received payoff if it rejects SC?’s offer in stage
k and if SC?¢ accepts SC”’ counteroffer in stage k + 1. That is,

—PJ(Bo)* L+ [1 = PJ(B0)] (8) 'R’
= —P)(Br+1) % L+ [1 = PJ(Brs1)] (85)°R". (8:42)
Similarly, if SC? acts in stage k, then B and By should satisfy

—PJ(B)* L+ [1 — Py(Bi)] (8re)* 'R
= —PJ(Bes1) * L + [1 = PJ(Brs1)] (85e) R™. (8.43)

How to collude: examples

In this section, we consider three different scenarios and show how colluders bargain
with one another.

Scenario 1: Reward is independent of risk

We first consider the scenario in which the market value of the colluded copy is not
time-sensitive; that is, §;, = 8. = 1. In addition, y = 0 and D(Py)) = 1 in the reward
function, and the total reward received from collusion is equally distributed among
all colluders. In such a scenario, the utility and the payoffs for SC® and SC?¢ can be
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simplified as

0 0 0 0
b <1< ; Lb) Pl and = (K n L”e) P+ 44

Bargaining solutions
* Absolute fairness solution: 1f all colluders agree to have the same utility, given the
utility function in (8.44), the absolute fairness solution is the pair (7°, 7%¢) € S, that
satisfies
PieB) _ L' +6/K
P (B) L' +0/K

where PJ(B) and P} .(B) are the SC” and SC’’s probabilities of being detected
as defined in (8.3) and (8.11), respectively, and L” and L% are the loss terms
claimed by SC® and C%¢, respectively. From the analysis in Section 8.1.2, for
B € [B. min(B, BT)], P} is a monotonically decreasing function of 8, and P .(B)
is a monotonically increasing function of B. Thus, PJ%/P) . is a monotonically
decreasing function of 8, and (8.45) can be solved easily using numerical methods if
the absolute fairness solution exists.

* Max—min solution: The max—min fairness solution with the payoff function defined
in (8.44) always exists and is unique. If the absolute fairness solution exists, then the
max—min solution and the absolute fairness solution are the same.

To prove this statement, note that 77 in (8.44) is a monotonically decreasing func-
tion of B and 7% in (8.44) is a monotonically increasing function of 8. There-
fore, there is one and only one max—min solution. Assume that the absolute fairness
solution exists, and there is a B’ € [8, min(B, B7)] that satisfies 7°(8') = 7"(8").
Then, forall 8 < g/, n°(B) = n"(B) = #*(8') = =**(B) and min(z"(B), x"*(B)) =
w"*(B) < w"*(B'), whereas for all B > p', x"(B) < n"(B") = x"*(B') < ="*(B) and
min(?(B), w*¢(B)) = n°(B) < n®(B’). Therefore, maxmin(r?, 7*¢) = 7?(B') =
w%¢(B’), and the max—min solution is the same as the absolute fairness solution.

* Max—sum solution: From (8.44), the max—sum solution in (8.40) is equivalent to

(8.45)

4 0
min  Cym =P K" — +L" |+ PJSK" | —+L"). 8.46
p=p=min(.p7) de (K d.c X (8.46)

The minimum Cs,,, is achieved either when B is at the boundary points or when

% = 0. Taking the first-order derivative of Cj,,, with respect to 8, we have
b be
Csum _ OFdeys (6 + L) + i goe (2 + L) =0,
a8 a8 K a8 K
where e _ VNoow {_(h — BVN/K"Y }
B Kb/ 2o, 202 '
2
(A1=B)Np+Ne
Py, Npoy, [h - K’w./N:+N£J
and == — expl — . (8.47)

0B Kb /27 (N, + N,)o, 202

The solution to (8.47) can be found numerically.
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* Nash bargaining solution: With the utility function defined in (8.44), (8.41) becomes
g(ﬂ) — (n,be _ lbe)abe (nb _ lb)ab ,

0 j— U=BieNee\
where 7% = — (2 4rt) o — KVNANe ) T
K I K

b 6 be h— Nl}(tive% 6
ie max Oa_ <Kb€ +L L) Q T + Kbe )
0 h— B\ g
b b Kb
= (Z=4+1L S iy
4 (K + > 0 < . + X
0 h— e\ g

and 7’ = maX{O, — <Kb +Lb) (0] <(7,,Kb> + < (8.48)

The B that maximizes g(B) in (8.48) either is on the boundary of [8, min(B, B1)]
or satisfies dg/98 = 0. If ag(B)/9B8 = 0, then

Q
Il

o1 ambe
0 = ape (nbe — nbe)ab (nb — nb)ab o
be p—1 aﬂ'b
+ayp (nbe — nbe)a' (nb — nb)a' 78/3 ,

0 ane
that iS, 0 = Qpe (7'[[7 _ lb) . + Lhe A
K ap

Py
+ay, (T[be _ lbe) (9 + Lb> d,c’

K p

Py

be b d.c 0 b

) a T -7 ; =+ L
or equivalently, Zbe — — . f”s — - é{ . (8.49)

ap b —gmb 3P & 4 Lbe

op
de 9P Zz

Note that both Z e [ and —
solution to (8.49) is a monotomcally increasing function of ‘(’f, and a larger ratio of
‘;—f results in a larger B and a higher ¢, That is, the Nash bargaining solution favors
the subgroup of colluders with a larger bargaining power.

/ a are increasing functions of 8. Therefore, the

8.5.1.2  Simulation setting and results
In our simulations, we first generate independent vectors following Gaussian distribution
N0, 1), and then apply Gram—Schmidt orthogonalization to generate orthogonal finger-
prints. The lengths of the fingerprints embedded in the base layer and the enhancement
layer are N, = N, = 50000, and each layer contains 20 frames. The total number of
users is 500, and each subgroup has 250 users. The probability of accusing an innocent
user, Prg, is 1073, Among the K = 250 colluders, K b =100 of them receive the finger-
printed base layer only, and the other K?¢ = 150 of the colluders receive fingerprinted
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Fig. 8.1 Feasible region and bargaining solutions with utility function as in (8.44), P, = 1073,
Ny = N, = 50000, K® = 100, K% = 150, and |U?| = |U%¢| = 250

copies of high resolution. We consider the scenario in which all colluders have the same
lossterm L = 0.1, and 0 = 5.

Figure 8.11 shows the feasible region and the four bargaining solutions in Section 8.4.1
with the utility function as in (8.44), and bargaining powers in (8.41) are a, = 2 and
ap. = 3, which are proportional to K? and K¢, respectively. This matches the real-
world scenario, in which the larger group, with more people, has a larger bargaining
power. In the example in Figure 8.11, the absolute fairness and the min—max solutions
are the same. In addition, compared with the absolute fairness solution, the max—sum
solution favors the subgroup with more people, which is SC?¢ in this example. The Nash
bargaining solution also favors SC?¢, as this group has a larger bargaining power.

Scenario 2: Reward is proportional to risk

In this section, we consider the scenario in which colluder i’s reward is proportional to
his or her risk of being detected; in the reward function in (8.12), we use y = 0.1 and
D(P;)) = P\ as an example. That is,

n¢=—P§ L%+ (1 —Pj.) RS,

0.1 pg
where RS = 65" Fi. : (8.50)
b ( £6)0! pb be pbe ’
K (f ) Pd,c + K Pd,c

Here, g is the subgroup index, and is either b if i € SC? or be fori € SCP.
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In this case, the reward each colluder gets is linear to his or her probability of being
detected. In addition, colluders who contribute higher-resolution copies also gain more
reward. The analysis of the four bargaining solutions is similar to that in Section 8.5.1 and
is not repeated here. We also assume that all colluders have the same loss term L = 0.1.

To illustrate the feasible set and the bargaining solutions when the reward is pro-
portional to the risk, we run simulations with the same setting as in Figure 8.11.
Figure 8.12 shows the feasible region and the absolute fairness solution with the utility
function in (8.50). First, different from Figure 8.11, every point in the feasible set with
0 < B < 1 is Pareto optimal, and there are no non—Pareto optimal feasible points as the
straight line segment in Figure 8.11. This is because, although P, be remains the same
forallB > pt =1-— ﬂ— Np VeV Ne) , P} is a monotonically increasing function of f.
Hence, when 8 > B, for all colluders in SCbe the denominator of the reward function
(8.50) is an increasing function of § and the numerator is a constant. Consequently, dif-
ferent from Scenario 1, %€ is a decreasing function of 8 when 8 > 7 in this scenario,
and all points in the feasible set are Pareto optimal.

Furthermore, comparing the feasible region in Figure 8.11 with that in Figure 8.12,
it is clear that both the maximum utilities that SC® and SC”¢ can achieve are much
higher if the reward is distributed proportionally (7? = =1.441 and 7%¢_ =1.403 in

max max

Figure 8.11, whereas % =2.182 and 7% =1.947 in Figure 8.12).

max

Scenario 3: Time-restricted bargaining

Here we consider the most general utility function in (8.50) to illustrate the time-
sensitivity of collusion when colluder i’s reward is proportional to the resolution of his
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or her contributing copy and his or her risk. We apply our analysis to the real video data
and verify our results.

Figure 8.13 shows the bargaining equilibrium versus the number of stages that col-
luders take to make agreement with the utility function defined in (8.50) and different
discount factors. Figure 8.13(a) uses 8, = 0.7 and §;. = 0.85, and Figure 8.13(b) is the
result with §, = 0.7 and §;. = 0.85. The feasible region and the Pareto optimal set with
the same utility function for the first stage of the game are shown in Figure 8.10. It
is clear from Figure 8.13 that all colluders’ utilities decrease as the negotiation takes
more rounds, and they have the incentives to finish the bargaining process as soon as
possible. This is especially true for SC?, whose utility decays faster. Therefore, at the
very first bargaining stage, the first mover will make an offer based on the analysis of
the equilibrium by solving (8.42) and (8.43). By comparing Figure 8.13(a) with (b), it
is clear that a higher discount factor results in a higher payoff. The discount factors §,
and 8y, can also be considered as the bargaining powers of SC? and SC?¢, respectively.
For instance, let us consider the scenario in which the two groups of colluders cannot
make agreement and they decide to collude within their own subgroups and generate two
colluded copies with different qualities. Apparently, SC® members would get much a
smaller reward than SC”¢ members because their colluded copy has lower quality. Thus,
SC" has more incentives to cooperate with SC*¢, which gives them a smaller bargaining
power.

Maximum payoff collusion

The previous sections analyze when colluders will cooperate, how colluders select the
collusion parameter 8 to ensure that cooperation increases all attackers’ utilities, and
how they bargain with one another. During collusion, in addition to 8, attackers can also
select with whom to collude and the number of fellow colluders — that is, K? and K.
In this section, we investigate the impact of (K”, K%¢) on colluders’ utilities and analyze
how attackers choose K” and K¢ to maximize their own payoffs. In this section, we
consider the scenario in which the market value of the colluded copy is not time-sensitive
(8, = 8pe = 1) and a colluder’s received reward depends only on the resolution of his or
her contributed copy but not his or her risk; that is, D(Pf)) =1.

Single-resolution collusion

We first start with the simple case in which all colluders receive fingerprinted copies
of the same quality. Because all fingerprinted copies have the same resolution, there is
no bargaining among colluders, and the risk and the reward are both evenly distributed
among colluders, as shown in the utility function (8.17). In this scenario, recall that from
Figure 8.2, colluding with more people does not always increase a colluder’s payoft, and
7@ starts to decrease when the total number of colluders exceeds K,,,. This section
analyzes K4y
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Given Np, N, and 0, to find K,,,,,, we solve = 0, or equivalently, find the root of
ag;” =0, where 7 is in (8.17) and x = 1/K is the inverse of K. As in the previous
section, we use f. = 1 as an example; the analysis for other values of f, is similar and

is thus omitted. From (8.17), to find K4, we solve

o an‘”
ax
where P;) = Q(a — byx)

aPy b, — byx)?
and 4 = $ exp{_(azx)}

dx 2

Here, a = h/o, and by = +/N;, + N,0,,/0,. Because of the existence of both the Gaus-
sian tail function and the exponential function, it is difficult to find the analytical solution
to (8.51), and we use numerical methods to solve (8.51). Given the solution x to (8.51),
we consider the two neighboring integers [1/x] and [1/x7, find the one that gives a
larger 7, and let K, equal to that number.

Figure 8.14 shows K, as a function of 6 when the colluded copy has high and low
resolutions, respectively. The system setup is the same as in Figure 8.3. From Figure 8.14,
K4y takes a smaller value when the colluded copy has a lower resolution. For example,
in Figure 8.14, with 8 = 50, K,,,. = 206 when the colluded copy has high resolution,
and K, = 162 when f. = 0.5.

Furthermore, K, is a decreasing function of 6. For example, with f, = 1, K,,,x =
385 when 6 = 10 and K,,,, = 173 when 6 = 100. This is because, when 6 takes a
smaller value and when attackers emphasize risk minimization more, they prefer to

(1+ 6x )+( P(’))e 0,

(8.51)
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collude with more people to lower their risk. Mathematically, it can be proved as follows.
After rearranging both sides of (8.51), we have

@ ap?
1— P — =t V2 (a — byx)? _
me % _[1— 0(a—byx)] : exp{ : }—1:9 I (8.52)
d S
ax

Assume that 6; > 6,, and x; and x, are the solutions to (8.52) when 6 = 6; and
0 = 0,, respectively. The left-hand side of (8.52) is a constant of 6. Consequently,

[1— Q@ —ban] exp {8 1 =07 <07 = [1- 0 — b)) I x
exp {W} — 1. Here, we consider the scenario in which colluders collude only if

their probability of being detected is smaller than 0.5, that is, Pf) = QO(a — bgx) < 0.5
and a — bgx > 0. In such a scenario, both [1 — O(a — byx)] and exp {w} are

decreasing functions of x, thus x; > x; and K} = 1/x; < K2 == 1/x,.

Multiresolution collusion

From the previous section, when colluders receive fingerprinted copies of the same
resolution, colluding with more people does not always increase an attacker’s payoff.
This is also true when colluders receive copies of different resolutions. Using SC?®
as an example, Figure 8.15 shows the impact of the number of colluders on 7%¢. The
system setup in Figure 8.15 is the same as that in Figure 8.5(a), and K% = 150 is
fixed.

In Figure 8.15(a), we consider the scenario in which K¢ is fixed as 150 and colluders
select the Nash bargaining solution with a:as, = K?:K"¢. Figure 8.15(a) plots ¢ when
K" takes different values. As shown in Figure 8.15(a), in this example, ¢ achieves
the maximum of 0.1681 when K? = 76, and it decreases if K” continues to increase.
When K? > 159, collaborating with colluders in SC? does not help colluders in SC*¢
further increase their utilities, and colluders will collude only with their fellow attackers
in the same subgroup. Figure 8.15(b) compares w”¢ when colluders select different
collusion strategies, including the absolute fairness solution, the max—sum solution,
and the Nash bargaining solution. It shows that, in this example, colluders in SC?¢
receive the highest payoffs from collusion if they choose the Nash bargaining solution
with ap:ap. = K?:K?¢. To conclude, from Figure 8.15(b), with a fixed K¢ = 150, if
colluders in SC?¢ want to maximize their own payoffs, the best strategy is to find another
76 attackers who receive the low-resolution copy and to choose the Nash bargaining
solution with a,:ap. = K?:K"¢. In the example in Figure 8.15, we fix K*¢ = 150 and
find the optimum K” to maximize SC”¢*s utility. In practice, a colluder may wish to
select both K”¢ and K’ to maximize his or her payoff. When attackers choose the
absolute fairness solution, a colluder in SC?¢ is interested in finding the K* and K’¢*
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that maximize 7, that is,

0

* be be
= m - + |1 =P o,
Tabs (K”,K’?f);eK,, d,c [ d,c] Kb(fb)y K be
O(fp)" 4
t —pb 1_pb‘ - - - he-|— I—Pbel —_— .
S d.c [ d,L] Kb(fb)y K be d,c [ d,c} Kb(fb)y + Kbe

(8.53)

The analyses for the max—sum and the Nash bargaining solutions are the same and are
omitted here.
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Table 8.2 Maximization of 7. N, = N, = 50000, 6 = 50, y = 1/3,and P;; = 1072

Fairness criteria Kb Kbex B* phex

Absolute fairness 1 182 0.0062 0.1624
Max—sum fairness 16 206 0.1274 0.1682
Proportional fairness, a, = a5 = 1 46 188 0.3792 0.1707
Proportional fairness, aj:ay, = K?: K" 52 176 0.4421 0.1742

Table 8.3 Maximization of 7°. N;, = N, = 50000, § = 50, y = 1/3, and P;, = 103

Fairness criteria Kb* Kbex B* pb*

Absolute fairness 1 182 0.0062 0.1624
Max—sum fairness 106 97 0.5858 0.1803
Proportional fairness, a, = a5, = 1 1 126 0.0076 0.2074
Proportional fairness, a;:ap = K?: K" 106 97 0.5858 0.1803

For the example in Figure 8.5(a), the optimal (K®*, K%**) with different fairness
criteria are shown in Table 8.2. As an example, from Table 8.2, if colluders prefer the
Max—sum fairness solution, then for a colluder in SC?¢ to maximize his or her own
payoff, he or she should find another 205 attackers who also receive high-resolution
copies and 16 attackers who have the base layer only. If we compare the four solutions in
Table 8.2, to maximize 7, the optimal collusion strategy for a colluder in SC?¢ is to let
(K", K%¢) = (52, 176) and to select the Nash bargaining solution with a,:a. = K?:K"¢.
It helps colluders in SC?° receive a maximum payoff of 0.1742 among all possible payoffs
that they could have.

For colluders in SC?, we can use the same method to find the optimum pair (K?, K?¢)
that maximizes 77; Table 8.3 shows the results. For instance, from Table 8.3, if colluders
decide to select the Nash bargaining solution with a;:a;. = K?:K?, then to maximize
7%, a colluder in SC? should find an additional 105 attackers who receive the base
layer only and another 97 attackers who have the high-resolution copies. Similarly, by
comparing all four collusion strategies, if colluder i € SC? hopes to maximize his or
her payoff, he or she should let (K”, K%¢) = (1, 126) —that is, find another 126 attackers
who receive both layers but no more attackers who have the base layer only — and select
the Nash bargaining solution with a;, = a;. = 1. By doing so, b achieves the maximum
0f 0.2047.

Simulation results

In our simulations, we test the first forty frames of the “carphone” sequence in QCIF
format, which is a popular test sequence for video processing. The base layer includes
all the odd frames, and the enhancement layer contains all the even frames. The length
of the fingerprints embedded in each frame is 2500, and the lengths of the fingerprints
embedded in the base layer and the enhancement layer are N, = 50000 and N, = 50000,
respectively. We use orthogonal fingerprint modulation [61], and use spread spectrum
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Fig. 8.16 Simulation results of a colluder’s utility when all attackers receive fingerprinted copies
of high resolution. The system setup is the same as that in Figure 8.2(a). The results are based
on 2000 simulation runs

embedding [58] to embed fingerprints into the host signals. During collusion, colluders
follow the two-stage collusion, and they adjust the power of the additive noise such that
IIn;[|* = ||JND jwﬁ”| 2. In addition, as an example, when defining the utility function,
we let colluders select & = 50 and y = 1/3. When identifying colluders, the fingerprint
detector uses the self-probing detector in Chapter 6. The fingerprint detector selects the
threshold % such that the probability of falsely accusing an innocent is Py, = 107>,

We first consider the scenario in which all colluders receive the high-resolution copies.
In such a scenario, they simply average all the fingerprinted copies that they have and
then add additive noise to further hinder the detection. The simulation results are shown
in Figure 8.16, and it is consistent with our analysis results shown in Figure 8.2(a). A
colluder receives a positive payoff when there are more than 125 colluders, and 7"
reaches the maximum when K is around 206. As K continues to increase, w¥) starts
decreasing.

We then consider the scenario in which colluders receive fingerprinted copies of
different resolutions. Following the example in Figure 8.15(a), we fix the number of
colluders who receive high resolution copies as K¢ = 150. We select K® such that
(K?®, Kb = 150) € K, and it is possible for colluders to find at least one B that increases
all colluders’ payoffs. Furthermore, as in Figure 8.15, we consider the scenario in which
colluders select the Nash bargaining solution with a,:a,. = K?:K"¢. Figure 8.17 shows
the simulation results of 7%¢, which is consistent with our analytical results shown in
Figure 8.15(a). In the example in Figure 8.17, r%¢ reaches the maximum when K? = 76.
If there are more than 76 colluders who have the base layer only, the 8 that maximizes
g(B) in (8.41) with ap:as. = K?:K" is the upper bound A, and ¢ decreases quickly
as K’ continues to increase.
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Fig. 8.17 Simulation results of 7% when colluders receive fingerprinted copies of different
resolutions. The system setup is the same as that in Figure 8.15(a). The results are based on
2000 simulation runs

Chapter summary and bibliographical notes

A social network exists only if the users gain from cooperation and have the incentives
to interact with one another. Therefore, to understand the necessary conditions for the
formation of media-sharing social networks, we must investigate when and how users
collaborate. We use multimedia fingerprinting system as an example, and study when
and how attackers collude.

To study when colluders form a coalition, we first consider a scenario in which all
attackers receive fingerprinted copies of the same resolution and the colluded copy is a
simple average of all copies with equal weights. In such a scenario, attackers collude
with one another if and only if the total number of colluders is larger than or equal to K.
We then show that colluding with more attackers does not always increase a colluder’s
payoff, and analyze the optimum number of colluders (K, ) that maximizes a colluder’s
utility.

We then consider the scenario in which attackers receive fingerprinted copies of differ-
ent resolutions. We first investigate the necessary conditions for colluders to cooperate
with one another. We analyze K, the set including all pairs of (K°, K*¢) where it is
possible for all colluders to benefit from cooperation, and explore all possible collusion
strategies that increase every attacker’s utility for a given (K?, K%¢) € K,,. We then
examine how the number of colluders in each subgroup, (K?, K%¢), affects colluders’
utilities, and analyze the optimum strategy to select fellow attackers if a colluder wants
to maximize his or her own payoff.

Furthermore, we study how the colluders reach agreements. We extend our model
to address the special time-sensitive property of multimedia contents to analyze the
colluders’ behavior by modeling collusion as a time-sensitive bargaining process and



168

Game-theoretic modeling of colluder social networks

find the equilibrium of the bargaining game. Our analysis shows that in the colluder social
network, the colluders will make an agreement at the first bargaining stage and reach
equilibrium; if the market value of the colluded copy is not time-sensitive, colluders
choose different points in the feasible set, depending on the colluders’ definition of
“fairness” and their agreement on how to distribute the risk and the reward among
themselves.

Interested readers can refer to references [63,60,68] for the study of equal-risk fairness
criteria in different fingerprinting systems. When colluders’ goal is only to minimize
their probability of being detected, the analysis in references [61,63] shows that in a
collusion attack with more attackers, each attacker has a smaller chance of being caught.
The exponentially decay model for the reward during bargaining are also discussed in
references [96-98].



Cooperation stimulation in
peer-to-peer video streaming

In the previous chapter, we used colluders in multimedia fingerprinting as an exam-
ple to study the necessary conditions for colluders to cooperate with one another,
and investigated how attackers negotiate with one another and reach an agreement.
In this chapter, we consider P2P networks, investigate how users in P2P systems coop-
erate with one another to form a social network, and study the optimal cooperation
strategies.

As introduced in Chapter 3, mesh-pull-based P2P video streaming is one of the
largest types of multimedia social networks on the Internet and has enjoyed many
successful deployments. However, because of the voluntary participation nature and
limited resources, users’ full cooperation cannot be guaranteed. In addition, users in
P2P live streaming systems are strategic and rational, and they are likely to manipulate
any incentive systems (for example, by cheating) to maximize their payoffs [119]. As
such, in this chapter, we study the incentives for users in video streaming systems to
collaborate with one another and design the optimal cooperation strategies.

Furthermore, with recent developments in wireless communication and networking
technologies and the popularity of powerful mobile devices, low-cost and high-quality—
service wireless local area networks (WLANSs) are becoming rapidly ingrained in our
daily lives via public hotspots, access points, digital home networks, and many others.
Users in the same WLAN form a wireless social network; such wireless social networks
have many unique properties that make cooperation stimulation more challenging. For
example, video streaming users in the wireless social network may use different devices —
example, laptops PDAs, cell phones, and MP4 video players — and they have different
requirements for the streaming quality and the power. For instance, compared with PDA
users, laptop users would prefer high-resolution videos, and they are willing to use more
transmission power for cooperation. Second, many users in the wireless social networks
have high mobility, and the quality of their network connections may be unstable. All
these motivate us to investigate the optimal cooperation strategies in wireless video
streaming social networks [120].

In this chapter, we study P2P live streaming over the Internet, consider a simple
scenario with nonscalable video coding, and study how to stimulate cooperation between
any two users. We investigate the Nash equilibriums of the game and derive cheat-proof
stimulation strategies. Such an analysis aims to stimulate each pair of users in P2P
video streaming to cooperate with each other and achieve better performance. Then,
we consider the unique properties of mobile devices and wireless channels and provide
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Fig. 9.1 Mesh-pull P2P live streaming model

incentives for user cooperation in wireless video streaming social networks. Finally,
to provide personalized service to users with different resources, we consider scalable
video coding and design a chunk-request algorithm to maximize the quality of users’
received videos.

9.1 Incentives for peer cooperation over the Internet

In this section, we consider P2P live streaming over the Internet, introduce a game-
theoretic framework to model and analyze user dynamics, and study how to stimulate
two users to cooperate with each other.

9.1.1 Mesh-pull P2P live streaming

We first briefly review the basic protocol and streaming mechanisms of mesh-pull P2P
live streaming systems as shown in Figure 9.1(a). In a mesh-pull delivery architecture
for live video streaming, a compressed video bit stream of bit rate B bps is divided into
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media chunks of M bits per chunk, and all chunks are available at the original streaming
server’s side. When a peer first joins the P2P live streaming network, he or she obtains
a list of peers who are currently watching the video, and establishes a partnership with
several peers. At any instance, a peer buffers up to a few minutes’ chunks within a
sliding window. Each user keeps a “buffer map,” indicating the chunks that he or she
has currently buffered and can share with others, and they frequently exchange buffer
map information. Time is divided into rounds of t seconds each; Figure 9.1(b) shows an
example of how peers cooperate with each other. At the beginning of each round, every
user sends a chunk request either to one of the peers or to the original streaming server.
Then, the supplier either replies by providing the requested chunk or rejects the request.

Two-player game model

We assume that there are N users in the live streaming social network and every user
buffers L chunks. The video stream is originally stored in the streaming server whose
upload bandwidth can only afford to transmit K’ chunks in one round (z seconds) with
K’ <« N. The server has no information of the network topology, and the P2P system is
information-pull, which means that the server sends only chunks that are requested by
some users, and it replies the chunk requests in a round-robin fashion. Because of the
playback time lags among peers, different users request different chunks in one round,
and the server cannot answer all users’ requests. In such a scenario, peers have to help
each other to receive more chunks and thus better-quality videos [121].

This section investigates the incentive mechanisms for peer cooperation in live stream-
ing. We start with a simple scenario with two cooperating users and nonscalable video
coding structure. To simplify the analysis, in this chapter, we consider a simple scenario
in which in each round, every peer can request only one chunk from, and uploads at
most one chunk to, the other peer. We build a game-theoretic framework to model and
analyze the dynamics between these two users, and design an optimal and cheat-proof
cooperation stimulation strategy.

We first define the utility (payoff) function of the two-player game. In each round, if
player i accepts the other player &’s request and sends the requested data chunk to &, we
define i’s cost ¢; as the percentage of i’s upload bandwidth used to transmit the requested
chunk. That is, ¢c; = M/(W;t), where W; is player i s total available upload bandwidth,
M is the size of the chunk, and t is the time duration of the round. If player k& forwards
the data that i requested and player i receives the chunk correctly, then i receives a gain
of g;, which is a user-defined value between 0 and 1. Every user in the P2P live streaming
network defines his or her own value of g; depending on how much he or she wants to
watch the video. A higher value of g; also implies that user 7 is willing to cooperate with
others to get a better-quality video. For instance, if all the user does is watch the live
streaming program and he or she is not distracted by other activities, he or she may select
g; = 1. On the other hand, if the user is watching several videos, browsing the Internet,
or downloading files simultaneously, he or she will not value the live streaming much,
and thus will set a lower value g;. Here, we consider only the scenario in which all g;s are
positive. This is because g; = 0 corresponds to the scenario in which user i does not care
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about the video quality and thus will not join the P2P live streaming network. We further
assume that there exists a minimum upload bandwidth W,,;, for all users, and thus ¢;
is upper-bounded by c¢;,0x = M/ Wi, The minimum upload bandwidth constraint is
necessary because if a user cannot even completely upload a chunk in one round period,
other users have no incentives to cooperate with him or her. Here, W; and g; are player
i’s private information, which is not known to the other player unless player i reports it.

Leta;(j) € {0, 1} be player i’s action in round j, where a;(j) = 0 means that player i
does not cooperate inround j, and g; () = 1 indicates that player i is willing to cooperate
in this round. Let P;, denote the probability that the requested chunk is successfully
transmitted from user 1 to user 2, and P,; is defined as the probability that user 2
successfully transmits the requested chunk to user 1. Then, player 1 and 2’ payoffs in
round j are

M
mi(a1(j), a2(j)) = a2(j)Pag1 — a1(j)er = a2(j)Prg1 — al(])m

M
m(a1(j), a2(j)) = a1(j)Praga — a2(j)ea = a1(j) Praga — az(]')W7ﬂ~ 9.1

This payoff function consists of two terms: the first term in r; denotes user i’s gain with
respect to the other user’s action, and the second term denotes user i’s cost with respect to
his or her own action. From (9.1), it is reasonable to assume that P>y g, > ¢; and Pjpgr >
¢y, as users will cooperate with each other only if cooperation can benefit both users and
give them positive payoffs. Let (a1 (), a(/)) = (v1(a1()), a2())), ma(ar (j), a2(j))) be
the payoff profile.

It is easy to check that, if this game will be played for only one time, the only Nash
equilibrium is (0, 0), which means no one will answer the other’s request. According to
the backward induction principle, this is also true when the repeated game will be played
for a finite number of times with the game termination time known to both players.
Therefore, in such scenarios, each player’s only optimal strategy is to always play non-
cooperatively. However, in many live streaming systems, these two players will interact
for many rounds and no one can know exactly when the other user will quit the game.

Next, we show that cooperative strategies can be obtained under a more realistic
setting. Let a,= (a;(1), a;(2), . ..) denote player i’s behavior strategy in the infinitely
repeated game, and a = (a,, ay) is the strategy profile. When the game is played more
than one time, the summation of a user’s payoffs in all times should be considered
as each player’s utility. However, in infinite-time game model, the summation usu-
ally goes to infinity, and therefore, the averaged payoff is considered instead. Define
X; = limy_ o %Z/T:o a;(j) € [0, 1] as user i’s averaged action. In this chapter, for
infinitely repeated games, we consider the following averaged utilities:

T
.1 ‘ .
vi(s) = TILH;O? E mi(a1(j), a2(j)) = x2 P g _XIW
Jj=0

T

.1 ‘ .
va(s) = lim — > m(@()), ax()) = ¥ Pags = x 92)
j=0

Wzl"
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Fig. 9.2 Feasible and enforceable payoff profiles

For two different action profiles (a;, ay) # (a}, a}), if their averaged actions are the
same — that is, (x1, x2) = (x], x3) — then their corresponding averaged utilities are the
same and (vy, v3) = (v}, v}).

Let us analyze the Nash equilibriums of the infinitely repeated game with the utility
function defined in (9.2). According to the Folk theorem, there exists at least one Nash
equilibrium to achieve every feasible and enforceable payoff profile. A feasible payoff
profile is the payoff that can be achieved, and an enforceable payoff profile is a feasible
payoft in which both users have nonnegative utilities. The set of feasible and enforceable
payoff profiles for the above game is:

V1 = convex hull {(v1, v2)|v1 = mi(a, a2) > 0, v2 = my(ar, az) > 0,
a1(/), a2(j) € {0, 1}}. 9.3)
Figure 9.2 illustrates the feasible and the enforceable regions of the previous infinitely

repeated game. The feasible region is inside the convex hull of {(O, 0), (Py1g1, — Wlﬂ),
(Pyg) — Wiﬂ, Pig — %), (—Wilr, Plzgz)}. V| is the gray region shown in
Figure 9.2, which is the intersection of the feasible region and the first quadrant. It
is clear that there exists an infinite number of Nash equilibriums.

For each feasible and enforceable payoff profile (vy, v2) € V1, let (a;, a;) be a Nash
equilibrium that achieves (v;, v;), and let (x;, x,) be the corresponding averaged strategy
profile of (a;, ay). If there are two or more Nash equilibriums that can achieve the same
payoff profile (v;, vy), their averaged strategy profiles are the same, and we focus on the

analysis of the average strategy profile here.

Nash equilibrium refinement

From the preceding analysis, one can see that the infinitely repeated game has an infinite
number of Nash equilibriums, and apparently, not all of them are acceptable simultane-
ously. For example, the payoff profile (0, 0) is not acceptable from either player’s point of
view. Therefore, in this section, we discuss how to refine the equilibriums based on new
optimality criteria, analyze how to eliminate the less-rational Nash equilibriums, and find
out which equilibrium is cheat-proof. In this section, we consider the most widely used
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optimality criteria as introduced in Chapter 4: Pareto optimality, proportional fairness,
and absolute fairness.

Pareto optimality

A payoff profile (v}, v2) € V) is Pareto optimal if and only if there is no (v}, vj) € V3
such that v; > v; for both users. Pareto optimality means that no one can increase his or
her payoff without degrading the other’s, which the rational players will always go to.
It is clear from Figure 9.2 that the line segment between (P g1, —%) and (P81 —
7= Piags — %) in the first quadrant and the line segment between (— 3, Pi2g) and
(Pg — % Ppg — %) in the first quadrant is the Pareto optimal set.

Proportional fairness

Next, we further refine the solution set based on the criterion of proportional fairness.
Here, we consider the Nash bargaining solution that maximizes the product g(x1, x;) =
v; - vp; that is

max  g(xy, x2) = vivy = x1x2(P2Po1g182 + c162)
0<x1,x2<1

—xjc1 Prags — x50, Py g1 9.4

It can be easily shown that the objective function g(x;, x;) and the constraint functions are
continuously differentiable at any feasible points, satisfying the KKT conditions [122].
Thus the optimal (x}, x5) either satisfies Vg(x{, x3) = 0 or is on the boundary of the
feasible region [0, 1]. If V f(x}, x3) = 0, then (x}, x3) satisfies

Bnl(x)yrz(x)

™ = x; (P12 P21g2182 + c1¢c2) — 2x7 Piagoc; =0
1

(x7.x3)

971 (x)2(x)

ox = XT(P12P21g1g2 + ci1c3) — 2X§P21g102 =0, 9.5)
2

(x},x3)

which has only one solution (xf = 0, x; = 0) and g(0, 0) = 0. Apparently, this is not a
desired solution. If (x{, xJ) is on the boundary of the feasible region, then it satisfies

xi=1x5= min{l,argn}cezle(l,xz)}

| PioPgi1g + i }
| 2¢y Py1g '

{1, argmax f(xi, 1)}

{1 Py Prigig +ciez }
' 2c1 Piagy '

= min
or x; =1, x{ =min

min

(9.6)
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Combining (9.5) and (9.6), we can obtain the Nash bargaining solution

’

Py Py 218 +M* /(W WrT?) 1 if Py Py1g1g+M? /(W1 Wyt?) <1
2PpgaM/(WT) ’ 2PpgaM/(WT) -

x* = (1, PePagiee M2 /NIt e PaPugigat M2 /W Wt .7)
» T 2P M) 2Pngi M/(W27) -

(1, 1) otherwise.

Absolute fairness
Here we consider the absolute fairness solution, in which both players in the game have
the same payoff. By solving v;(x}, x3) = va(x], xJ), we can get the unique absolute
fairness solution as follows:
Pugi+M/(W. .
(721g1+ A 1) if Pogs + 7 = Pugi + gz

ot = Ppg+M/(WT)’ (9.8)

Piog+M/(Wi1) . o u
(lv m) if Pyigi+ 7 > Pog + -

Optimal and cheat-proof strategies

In the previous section, we obtained several Nash equilibriums with different optimality
criteria. However, as shown in (9.7) and (9.8), all these solutions need some private infor-
mation (g;, W;, P;;) reported by each player. Because of players’ selfishness, reporting
private information honestly cannot be taken for granted and players may cheat whenever
they believe cheating can help increase their payoffs.

Cheating on private information
One way of cheating is to cheat on the private information (g;, W;, P;;). First, let us
examine whether the proportional fairness solution in (9.7) is cheat-proof with respect

to (gi, Wi, Pyj).
From (9.7), when
PuPugiga + M/ (Wi Wat?)  Pog M/me) _ 1 9.9)
2Py g1 M/(W,T) 2M/(Wyt) — 2Png T '
x} = 1is fixed and
P M /(W
3 1282 /(W) (9.10)

T 2M/(WsT) 2P g

From (9.10), if user 2 reports false and lower values of the product P,g, W>, he or
she can lower x; and, therefore, further increase his or her own payoff m,(1, x}) =
Pigr — x5 % Similarly, when

Pi2Pyg1g2 + M? /(W W)t?) __ Paa M/(War) _ 1 9.11)
2Pg M /(W) 2M/(WhT)  2Ppg T '
x5 = 1is fixed and
Pyig M/(Wrt) 9.12)

xF = .
LT 2M/ (W) 2P;pg
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By falsely reporting lower values of the product P, g W), user 1 can lower x{ and
thus further increase his or her own payoff m;(x}, 1) = P21 — xikwﬂﬂ Therefore, the
proportional fairness solution in (9.7) is not cheat-proof. Applying similar analysis to the
absolute fairness solution in (9.8), we can also prove that the absolute fairness solution
is also not cheat-proof with respect to private information. Therefore, players have no
incentives to honestly report their private information. On the contrary, they will cheat
whenever cheating can increase their payoff.

From the preceding analysis, to maximize their own payoffs, both players will report
the minimum value of the product P;;g; W;. Because we have assumed that P;;g; >
¢i = M/(W;t) and W; > W, both players will claim the smallest possible value

PjigiW; = M/t, and both solutions in (9.7) and (9.8) become

x* = (1, 1); 9.13)
the corresponding payoff profile is:
* P, P 9.14)
v = - —, - — . .
2181 Wit 1282 Wyt

To summarize, both players will report the smallest possible product P;;g; W; = M/,
and they should always cooperate with each other. It is clear that the solution in (9.13) is
an Nash equilibrium, Pareto optimal, and cheat-proof with respect to private information
gi, Wi, and Pj;.

Cheating on buffer map information

In mesh-pull P2P live streaming, at the beginning of each round, players exchange buffer
map information with each other, and each player knows which chunks the other player
has in his or her buffer. Thus, another way of cheating is to cheat on the buffer map
information — that is, to hide the availability of some chunks in his or her buffer to the
other user. It may help the cheating user reduce the number of requests from its peer and
thus reduce the number of chunks that the cheating user needs to upload. As a result, it
may help increase the cheating user’s payoff.

The only circumstance under which cheating on buffer map information is effective is
when all chunks claimed by the cheating user are already in the honest user’s buffer, and
the honest user has some chunks that the cheating user needs. That is, the honest user
can help the cheating user but the cheating user cannot provide any useful chunks to the
honest user. To prevent this cheating on buffer map information, a possible strategy is
to let both users upload the same number of chunks.

To summarize, the two-player cheat-proof P2P live streaming cooperation strategy is
as follows: in the two-player P2P live streaming game, to maximize each user’s payoff
and be resistant to possible cheating behavior, a player should not send more chunks
than the opponent sends. Specifically, each player in each round should always agree to
send the requested chunk unless the opponent did not cooperate in the previous round
or there is no useful chunk in the opponent’s buffer.
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Fig. 9.3 Simulation results on two-person cheat-proof P2P live streaming cooperation strategy

Performance of the cheat-proof cooperation strategy

Here we study the performance of the two-player cheat-proof P2P live streaming coop-
eration strategy discussed earlier. In our simulations, there are 500 users in the network,
and everyone can directly download chunks from the server. Each peer is either a DSL
peer with 768 kbps uplink bandwidth, or a cable peer with 300 kbps uplink bandwidth.
We fix the ratio between DSL peers and cable peers as 4:6. The video is initially stored
at an original server with upload bandwidth of 3 Mbps. The request round is one second
and each peer has a buffer that can store 30 seconds of video. We choose the “Foreman”
CIF video sequence at frame rate of 30 frames per second, and pad the video to two
hours. An MPEG-4 video codec is used to encode the video sequence into a nonscalable
bit stream with bit rate 150 kbps. We divide the video into one-second chunks, thus each
chunk has M = 150K bits. Among those peers, we randomly choose two who cooperate
with each other using the two-player cheat-proof P2P live streaming cooperation strat-
egy. Weset g1 =1, g2 =1,0.9,0.8, 0.7, and every peer claims the lowest bandwidth
Wnin = 300 kbps.

In our simulations, user 1 always reports accurate private information to user 2, and
user 2 cheats on his or her buffer map information. Among all the chunks that user 2 has,
he or she randomly selects p. percent of them, and changes their status from “available”
to “missing.” Figure 9.3 shows user 2’s utility with different gain g,, where the x axis is
p. and the y axis is the utility v,. From Figure 9.3, for a given g, a higher value of p,
gives the cheating user a lower payoff. In addition, when g, is small (for example, when
g = 0.7), if the cheating user selects a larger p., then he or she receives a zero payoff.
That is, cheating cannot help a user increase his or her payoff, but rather decreases his or
her utilities. It clearly demonstrates the cheat-proof property of the proposed cooperation



178

9.2

9.2.1

Cooperation stimulation in peer-to-peer video streaming

Fig. 9.4 Tllustration of a wireless live-streaming social network

strategy. In addition, from our simulations, by cooperating with each other, both peers
double the number of chunks that they receive: each user receives an average of 278
chunks without cooperation and an average of 542 chunks with cooperation. Therefore,
cooperation enables users to reconstruct a better-quality video.

Wireless peer-to-peer video streaming

In this section, we first describe the wireless video streaming system model and study
how two users in a wireless video streaming social network cooperate with each other. We
then define the payoff function and introduce the game-theoretic framework to analyze
user dynamics in wireless P2P video streaming.

Wireless video streaming model

Figure 9.4 shows the architecture of a wireless video live streaming social network. The
wireless network service is provided by an access point connected to the Internet. The
video bit stream is divided into media chunks of M’ bits in the original server, each
of which is channel-coded to M bits and transmitted in ¢ seconds with data rate M/t
bits per second. All chunks are available at the streaming server in the Internet. Here
we assume that there is a dedicated channel of bandwidth B Hz for user cooperation,
and that this channel is different from the channels between the access point and the
users. We assume that the dedicated channel for user cooperation is symmetric and is
a slow-fading channel with additive white complex Gaussian noise with variance o2
Here we use the wireless signal model

Aji
Y, =Zi + —=X; (9.15)

A/ dl_]
where X; is the signal transmitted from user j to user 7, Y; is the signal that user i
receives, Z; is the additive Gaussian noise, 4 j; is the channel fading factor, and d;; is
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Fig. 9.5 Cooperation model for users in the P2P video streaming social network

the distance between user i and user j. Because of the symmetric channel assumption,
A4;; = Aj; and we will not differentiate between these two in the following section.

We assume that two users, u; and uy, try to cooperate with each other and exchange
chunks. Each user has a buffer of length L, which stores L s chunks to be played
and L — L y chunks that have been played. First, u; and u, exchange their buffer map
information and the transmission power P; and P, that u; and u, use to transmit the
chunks, respectively. To ensure that the packet can be successfully received, intuitively,
users will cooperate only with people whose transmission power is above the minimum
required transmission power P,;,. Hence we assume that P, > P,;, and P, > P,.
The chunk exchange is done on a round-by-round basis, and each round is of duration
T seconds. At the beginning of each round, users send requests to each other, and
at the same time keep downloading from the original server. Each user is allowed to
send multiple requests in each round, and he or she can also answer multiple requests.
Figure 9.5 shows how two users cooperate with each other: at the beginning of each
round, every user sends chunk requests to the other. Then, the supplier either replies with
the requested chunks or rejects the request. This request-answering process is repeated
for all rounds.

Two-player game model

Assume that in the original structure, every user in the wireless live-streaming social
network asks only the original server in the Internet for the media chunks, and two of
them, u, and u,, want to see if they can cooperate with each other to get a better-quality
video. We use the following game to model the interaction between u; and u,.

* Players and player types: There are two players, «; and u», in this game. Each player
u; has a type 6; € {laptop, PDA, PDA2}. Users with different types have different
costs to share chunks with each other and receive different gains if they receive chunks
correctly. We assume that the battery used in the type PDA2 has a shorter life than
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that in PDA, and thus the cost per unit energy for PDA2 is higher than that for PDA.
Also, the cost per unit energy for a laptop user is the smallest among the three.

* Strategies: In each round, the two players first exchange their buffer map information,
and then send the chunk requests to each other. Upon receiving the chunk requests,
each player u; decides how many chunks he or she will send to the other user in
this round. We define the number of chunks u; agrees to send in round £ as his or
her strategy a;(k) € Z. The two users use time division multiplexing access (TDMA)
to share the cooperation channel with bandwidth B, and the bits to be transmitted
within a round cannot exceed the channel capacity. Assume that in round %, u;
and u, take turns to transmit, and are allocated 7; and 7, seconds, respectively,
with t; + 7, < 7. For u;, the transmission data rate should be upper-bounded by

the channel capacity; that is, a;(k)M < Bt log ( 1+ 5;2—/37‘32). Similarly, for u,, we

have ay(k)M < B, log (1 + 5?;'622‘ ) Therefore, the constraint on the strategy profile
(a1(k), ap(k)) at round £ is

ay (k) a (k) _1B

AL N (R 1)
log(1 + P41, /(d2o?))  log(l + P45, /(dppo?) — M

If (9.16) is not satisfied and users are transmitting above the channel capacity, the
probability of erroneous transmission would be high and users will not receive any
chunks successfully.

* Utility function: u;’s utility function 5; is the gain if he or she successfully receives
the chunks minus the cost to forward chunks to the other user. Because users
in the wireless live-streaming social network use mobile devices, the battery energy
is the most limited resource. Hence we consider the transmission energy as the cost
of cooperation, and let ¢; be the cost per unit transmission energy for u;. Different
types of players would give different weights to the energy cost. For example, clients
running on tight energy budgets would have a higher cost than those with powerful
batteries. The total cost of user i transmitting M bits will be ¢; times transmission
power times transmission time, which is M divided by the channel capacity.

Let g; be u;’s gain if he or she successfully receives one chunk. As with the P2P live
streaming over the Internet in the previous section, every user in the P2P wireless video
streaming social network defines his or her own value of g; depending on how much he
or she wants to watch the video. A higher value of g; implies that user i is willing to
cooperate with others to get a better-quality video.

Based on the preceding discussion, given the strategy profile (a;(k), a»(k)) in round
k, the players’ payoffs in the kth round are

MP
(a1 (), ax(k)) = ax(k)g1 — ar(k)ey ———————
Blog(1 + d:zag
MP
7'[2(611(](), az(k)) = al(k)gz - az(k)CQ—ZPAZ. (917)
Blog(l + -4
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Fig. 9.6 Feasible and enforceable payoff profiles

Let w(ai(k), ay(k)) = (mi(a(k), ax(k)), ma(ai(k), az(k)))2 be the payoff pro-
file for round k. Define K, =MP/ [B log (l + Dy and K, = MP,/

2 >
d[zan

2
{B log (l + ;f::jz‘ )} . K; can be considered as the energy that user i spends on trans-

mitting a chunk. It is reasonable to assume that g; > ¢; K;; that is, cooperation always
benefits participating users and brings them positive gain. In addition, we assume that
there exists a C,,,y, Where ¢;K; < Cp,,. Here ¢; and g; are user i’s private infor-
mation depending on user i’s type, and are not known to others. We assume that
users do not exchange their private information — that is, their types. Thus this is
a game with incomplete information. We assume that users have the belief of the
probability of the other users’ type, which is independent of their own type. Users
believe that another user’s probabilities of being a laptop, PDA, and PDA2 user are
Py, P,, and P3, respectively, and we assume that this belief is independent of their own

type.

Optimal cooperation strategies for wireless video streaming

Similar to the analysis in Section 9.1.2, in this section, we first extend the one-stage
game model in Section 9.2.2 into an infinitely repeated game. We then apply several
optimization criteria, such as Pareto optimality and time-restricted bargaining solution,
to refine the Bayesian—Nash equilibriums (BNEs) of the game. Furthermore, we discuss
the possible cheating behavior, and design cheat-proof cooperation strategy to stimulate
cooperation between two users.

Follow the same discussion as in the previous section, the one-stage game model can
be extended to an infinitely repeated game. Figure 9.6 illustrates both the feasible region
and the enforceable region: the feasible region is inside the triangle bounded by dashed
lines, and the enforceable feasible set V) is the shaded region shown in Figure 9.6. It
is clear that there exists an infinite number of BNEs. To simplify our equations, in this
chapter, we use x = (x1, x,) to denote the averaged BNE strategies corresponding to an
enforceable payoff profile (x,g1 — x1¢1 K1, X122 — x2¢2K3) in V7.
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From the preceding analysis, we can see that the infinitely repeated game has an infinite
number of equilibriums, and apparently, not all of them are simultaneously acceptable.
In this section, we discuss how to refine the equilibriums based on new optimality criteria
to eliminate those less-rational solutions and find cheat-proof equilibriums.

Nash equilibrium refinement

We use Pareto optimality and time-restricted bargaining to further refine Nash
equilibriums.

Pareto optimality: 1tis clear from Figure 9.6 that the solid segment between (—C, P,
g1TP/K3) and (gt P/K;, —C Pit) in the first quadrant is the Pareto optimal
set.

Time-sensitive bargaining solution: Because the players’ action pair (a1, a;) must
satisfy (9.16), and both players are rational and greedy, they will try to maximize the
quality of their video streaming by requesting as many chunks as possible in each
round. Every user will request all the chunks that are in his or her opponent’s buffer
and that he or she needs. However, the maximum number of bits transmitted in a round
is limited by the channel capacity to ensure that the transmitted chunks are received
correctly. Thus, users must bargain for their chunk-request quotas for every round to
ensure that the total number of bits to be transmitted is not larger than the channel
capacity. Also, the gain of receiving a chunk is time-sensitive. For instance, if users
cannot reach an agreement before a chunk’s playback time, users gain nothing even if
they receive that chunk later. Therefore, users want chunks with earlier playback time
to arrive as early as possible, and for chunks with later playback time, the worry of
not receiving them on time to keep their value is less. To model such a phenomenon,
the reward of receiving chunks is decreasing as the time spent on bargaining process
increases.

We model the time-sensitive bargaining process for round & as follows: One user

offers an action pair (a%l), agl)) first, and the other user can decide whether to accept this

offer or to reject and offer back another action pair (a?), af)). This process continues
until both players agree on the offer. If users reach an agreement at the jth action pair,
then g; decreases to 8{ 71(L Cr.i)gi fori =1 or 2, where §;(L Cy ;) is the discount factor
foru;, LCy; = {Ii, ..., I;} denotes the indexes of the chunks u; wants to ask in the kth
round, and / (k) denotes the index of the chunk playing at the beginning of the kth round.
Let ¢ be the length of a chunk (in seconds).

Depending on how early the chunks must be received to preserve their value, we
separate the chunks into two groups with different discount factors 8;(LCy ;). The first
group contains the chunks whose playback time is within the current bargaining round.
The second group includes the chunks that are currently missing in the buffer and
whose playback time is later than the end of the current bargaining round. At time ¢,
for the L — L ; chunks whose playback time has already passed, the reward of receiving



9.3 Optimal cooperation strategies for wireless video streaming 183

Chunk Index
1(k)—1 I(k) I(k)+1 I(k)+2 I(k)+3 I(k+1)
buffer | | |
=
Beginning of the kth round (current time)
Beginning of the k+1th round

-

T
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these L — L y chunks will remain 0 after time ¢. Therefore, the reward of these L — L ;
chunks will not decrease as time goes by, which means they should not be taken into
consideration when calculating 6; (L Cy ;).

For the first group of chunks, assume that there are ¢’ of them, and they are the first
q’ terms in LCy ;. That is, among all the chunks that user u; needs, there are ¢" of them
whose playback time is the current (kth) round. Therefore, for these ¢’ chunks, if users
cannot reach agreement in the kth round, user u; gains nothing by receiving them, as
their playback time has already passed. For each of these ¢’ chunks whose playback time
is within the kth round, the later its playback time, the higher chance that the gain of
receiving it can be preserved. We use such a chunk index difference to model how fast
the value of a chunk decreases with time.

For the second group of chunks, which are the left ¢ — ¢’ chunks in LCy; that would
be played after the kth round, user u; still gains by receiving them if the bargaining
process does not end within a round duration. However, if the bargaining process in
round k takes more time, the number of chunks that can be transmitted in the kth round
would decrease. Consequently, a smaller portion of the ¢ — ¢’ chunks can be received
in the kth round; thus, users receive a small gain. Therefore, even for the chunks that
would be played after the kth round, their value would have a higher risk to be dropped if
the bargaining time in the kth round is longer. That is, the value of these ¢ — ¢’ chunks
is also decreasing with time and should be counted in §. Because chunks in the second
group are not as urgently needed as the first group of chunks, we multiply the discounter
factor 8 of chunks in the second group by a “reduced constant” d.

According to this analysis, we define the discount factor of gain for user i at round &
as follows:

e T E i 1)) + (g — )
MG = e L, -

, (9.18)

The first term in the numerator of (9.18) is the sum of the index difference between the
requested chunks and the last chunk that can be played in the kth round.

Figure 9.7 gives an example to illustrate the time-sensitive property for the live-
streaming scenario. The white blocks are the chunks that #, has in the buffer, the gray
ones are the chunks he or she needs, and the buffer contains L = 6 chunks; L — L =1
chunk’s playback time has already passed, and this chunk does not play a role in the
calculation of the discount factor §. In this example, the number of chunks that u;
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would request is ¢ =4; ¢’ =3, and v/t = 4. Therefore, ?/:1 [L— (L — I(k))] =
4-1)4+@—-2)+@—-3)=6,and g — ¢’ =1. Let d =0.8, then the discount factor
of gain for user i at round & is §;(LCy ;) =0.37.

Because both players’ payoffs decrease as the time for bargaining increases, the first
mover would seek the equilibrium and offer at the first bargaining round for his or
her maximum payoff. Let §; and &, be the averaged discount factor for u; and u,
over all rounds. Here, we are discussing the equilibrium of the infinite game, which is
the outcome when the game’s end time goes to infinity. Thus, at each round, users do
not need to predict the discount factor averaged over all rounds (including the future).
Instead, for each round, users can calculate the averaged §; until the previous round, and
find the equilibrium. Such a mechanism will result in the equilibrium as follows. The
Pareto optimal equilibrium pair ((xfl), xél)), (xgz), xéz))) for the infinitely repeated game
happens when

2 2 1 1
xé )gl —xg )clKl = 81x§ )gl — x§ )clKl

1 1 2 2
xi )gz - x§ Jer Ky = 52)65 )gz — x§ )er Ko,

K, K;
h — — =1 9.19
where x; P + x; P, T 9.19)

Because two users take turns to make the first offer, the time-sensitive bargaining strategy
(x7,x3)1s

1+m (1—51)%glf
X1 = 5 X — — K. P,
(m — DKici +(m —81) 7
K P
T — X135 gz-{—Cszf
x= PP hetem = R (9.20)
K, 5282 + 2 Ko 5

Itis clear that the bargaining solution in (9.20) depends on the knowledge of both users’
types — that is, the private information, which is unavailable. Both players know the dis-
count factors because the discount factors depend only on the chunks to be requested that
the two users must exchange every round. Although at the beginning, users do not know
each other’s type, they can probe it during the bargaining process using the following
mechanism. Let 7} be u;’s type, which is only known to uy; let 75 be u’s type, and 7'(j)
is the j' type. At the first bargaining stage, without loss of generality, let u; be the first
mover. User u; calculates all the bargaining equilibriums (agl)(T 1, T'(j)), aél)(T 1, T(j)))
for j =1,2,3, corresponding to the three possible types of u,. Then u; chooses
the the equilibrium ;' that gives highest p;m(a\"(T1, T(j')), &{(T1, T(j"))). User
up will accept the offer if nz(agl)(Tl, 7)), agl)(Tl, T(j))) is larger than or equal to
m2(a\V(T1, Tb), a{ (T}, Ty)). If not, uy will offer back (a>(T}, T»), a$”(T1, T»)), and the
two users reach an agreement. Because #; calculates the offer based on the equilibrium
in (9.20), which depends on u;’s own type, u, can probe u;’s type based on the offer he
or she made. Thus after the first bargaining stage in the first chunk-requesting round, u,
knows u’s type, and because u, will make the first move in the next round, after two
rounds, each user has the information about the other’s type.
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Cheat-proof cooperation strategy

Users in peer-to-peer wireless video streaming social networks will try to maximize
their own utility even by cheating. Therefore, to ensure fairness and to give incentives
to users, it is crucial that the cooperation strategy be cheat-proof. In this subsection,
we first discuss possible cheating methods, and then design the two-person cheat-proof
cooperation strategy in peer-to-peer wireless video streaming social networks.

Cheating on private information
Because users know each other’s private information (g;, ¢;) from the offers they
make, users can cheat by making different offers. First, let us examine whether the
time-sensitive bargaining solution in (9.20) is cheat-proof with respect to (g;, ¢;) —
that is, determine whether a smaller x; can help increase x; or decrease P, and thus
increase .

x1 1s a function of m and

K\ P, P;
oy U+m (Kot i) —hReT 01

2
2[om = DK1er + 0n = 8851

am

which is always smaller than 0 because m > 1 > §;. Thus, x; is a monotonically decreas-
ing function of m if §; < 1.
Furthermore,

am (62 — I)Csz%

P = 5 <0 and
&2 (52g2 + Cﬂﬁ%)
am (- 32)K2%
— = > 0. 9.22
s N2 = (9.22)
(82g2 + Cszﬁ)

Therefore, m is a monotonically decreasing function of g, and is a monotonically
increasing function of ¢; if §; < 0. Thus, u, can have a higher payoff by making the
bargain offer by using a smaller g,, a larger ¢;, and a smaller P,. Similarly, #; can also
achieve higher utility by offering the equilibrium based on a smaller g, a larger ¢;, and
a smaller P;.

From this analysis, both players will bargain based on the minimum value of g; and
maximum value of ¢;. As we have assumed that g; > ¢; K;, and P; > P,;,, both players
will make the offer based on g; = ¢; K; = Cyyux, and P; = P,,;,,. Thus the solution (9.20)
becomes:

c_ G-y i
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Fig. 9.8 Example of how to cheat on buffer information

which implies that both players should always cooperate with each other. It is clear that
the solution in (9.23) forms a Nash equilibrium, is Pareto optimal, and is cheat-proof
with respect to private information g; and ¢;. The user whose discount factor is closer
to 1 has an advantage, and if §; = §,, then x{ = xJ and is equal to half the number of
chunks that can be transmitted in T seconds.

Cheating on buffer map information

The other way of cheating is to cheat on buffer information — that is, although player
i has chunk & in the buffer, he or she does not report it to the opponent in an effort to
reduce the number of requests from the opponent. However, from (9.18), hiding chunks
that the other user needs might increase the other user’s discount factor.

Take Figure 9.8 as an example. The white blocks are chunks in the buffer, and the gray
blocks are the chunks that the user needs. Assume that user 1 always honestly reports his
or her buffer information, and the time-sensitive bargaining solution gives a two-chunk
request quota for user 1 and a two-chunk request quota for user 2. Apparently, user 1
will ask for two of chunks 1, 4, and 5 from user 2, and user 2 will ask for chunks 2 and
3 from user 1. Now assume that user 2 wants to hide chunks in his or her buffer from
user 1, so the number of chunk requests from user 1 to user 2 will decrease, resulting
in an increase of user 2’s payoff in this round. It is clear that user 2 must hide at least
two chunks to increase his or her payoff, because if user 2 hides only one chunk, there
are still two chunks in user 2’s buffer that user 1 needs. User 2 can choose two among
chunks 1, 4, and 5 to hide; hiding different chunks will lead to different utilities. For
instance, if user 2 hides chunks 1 and 4, this means chunk 5 is the only chunk that user
1 needs. However, user 2 would request chunks 2 and 3 from user 1. Because chunk 4
has a later playback time than those of chunks 2 and 3, the discount factor of user 1’s
gain will be larger than that of user 2. Thus, user 1 will have more advantage in the
time-sensitive bargaining process, and the bargaining solution might be changed to a
three-chunk request quota for user 1 and a one-chunk request quota for user 2. As a result,
user 2’s utility decreases because now he or she can request only one chunk from user
1. Therefore, user 2 has no incentive to cheat on buffer information by hiding chunks 1
and 4.

Although user 2’ cheating on buffer information will always increase the discount
factor of user 1’s gain (§;), it does not necessarily always decrease the chunk-request
quota. The reason is that the chunk-request quota is always an integer, as a partial chunk
gives no gain for either user and the users would like to round the time-sensitive solution
to the nearest integer. For instance, if before cheating, the time-sensitive bargaining
solution is (1.8, 2.2), and the solution changes to (2.4, 1.6) after cheating, both solutions
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round to (2, 2), which means that if user 2 hides the chunks properly to keep §; low so that
the chunk-request quota does not change after cheating, cheating on buffer information
will increase user 2’s utility because user 2 can still request two chunks from user 1, and
there is only one chunk in user 2’s buffer that user 1 needs.

Therefore, to prevent selfish users from gaining higher utility by cheating on buffer
information, each player should not send more chunks than what the other user has sent
to him or her.

Cheating on transmission power

The transmission power that user 1 and user 2 use for cooperation, P; and P,, are
declared in the beginning of the game, and they directly influence the feasible region, as
in Figure 9.6 and the bargaining solution (9.23). As discussed in Section 9.3.2.1, user i
can increase his or her payoff by decreasing P;; thus, both users will declare that they
use the minimum power P,,;,. However, if the user declares that he or she transmits the
chunks using P,;, but the actual power used for transmission is smaller than P,;,, he
or she can have higher utility by paying less cost for cooperation.

Given the signal model in (9.15), the receiver must estimate the attenuation term
A;j/+/d;; before estimating the transmitted power. Suppose user i wants to estimate
Aij/ \/cf] . If user j is honest, user i can simply ask user j to transmit a probing signal
using P, to estimate the attenuation. However, in the fully distributed system, user j
might be cheating and may transmit the probing signal with power smaller than P»; thus
the attenuation that user i estimated will be more serious than the real attenuation. To
solve this problem, user i sends to user j a probing signal that user j cannot decode
and asks user j to transmit back the received signal; user i can then investigate the
attenuation from the replied signal.

If user i sends the probing signal X to user j, then the signal Y; that user j receives is
Zj+ A4;;/ \/aTjX . Suppose the selfish user j wants to manipulate the signal; he or she
can secretly amplify ¥; with a constant o < 1 and then send «Y; back to user i. Then
the replied signal Y; that user i receives will be

Ay 43
dij dij
. . A2,
Because user i knows X and the noise power o2, he or she can easily extract o S+ X from
ij

Y;, divide the energy of the residue by o2, and get the estimation of 1 + o?. Given o, the
2

) A2 . . . . .
attenuation term —* can easily be estimated. From this analysis, such probing procedure
ij

is cheat-proof, because no matter how user j manipulates the signal, the estimation of

the attenuation term is independent of «.
AZ
d

After estimating -, the transmission power can easily be estimated by calculating
ij

the averaged power of the signal at the receiver’s side. Therefore, user i can compute the
estimated transmission power P}(k) by user j at the kth round by
di/' 1 t=ty+7;

Pi(k) = —5— V(6 - o], (9.25)

2 L.
A7 T i,



188

9.3.2.4

9.3.3

Cooperation stimulation in peer-to-peer video streaming

where y(¢) is the received signal, ¢ is the beginning of user j’s transmission in the kth
round, and 7; is the duration of user j’s transmission in the kth round.

Thus we design a mechanism to prevent cheating on transmitted power based on P;(k)
in (9.25):

* Each user i at each round & uses (9.25) to estimate user j’s transmission power. If
Pj/.(k) is smaller than P,;,, then at the (k + 1)th round, user i transmits the chunks
using P]’ (k). If P]’ (k) = Pyin, user i uses Py,;, for cooperation.

* Each user estimates the transmission power at every round and follows the preceding
procedure.

Using this mechanism, if user i decides to cheat by transmitting chunks with power
P/ < Pyn, then the other user j can estimate P/ and use P/ to transmit the chunks for
user i in the next round. Therefore, although user i increases his or her payoff in the
current round, the payoff will be decreased in the next round; thus, the actual channel
capacity is less than the user’s estimation using P,,;,. Therefore, the probability for both
users of successfully receiving the requested chunks would decrease and lead to no gain,
as they cannot receive the extra chunks by cooperation. Thus, no user has the incentive
to cheat on the transmission power if both follow this mechanism.

Two-player cheat-proof cooperation strategy

Based on the preceding analysis, we can conclude that, in the two-player wireless
live streaming game, to maximize each user’s own payoff and resist possible cheating
behavior, each player in each round should always agree to send the requested chunks
up to the bargained chunk-request quota as in (9.20) and should not send more chunks
than his or her opponent has sent to him or her. Also, each user should estimate the other
user’s transmission power in every round, and use the estimated power for transmission
if the estimation result is smaller than P,,;,. We refer to this strategy as the two-player
cheat-proof wireless video streaming cooperation strategy.

Simulation results for two-user case

To demonstrate the cheat-proof property of the two-user cooperation strategy, we use a
WiFi network as an example. The link from the wireless router to the Internet is a DSL
link with 1.5 Mbits download bandwidth. There are ten users in the network using live-
streaming service without cooperation, and another five users using Internet resources
at the same time. We fix the ratio among laptop, PDA, and PDA2 users as 1:2:2. The
video is initially stored at an original server with an upload bandwidth of 3 Mbps, and
there are another 400 users in the Internet watching the same video stream. The request
round is one second and the buffer length is ten seconds. We choose the “Foreman” CIF
video sequence with frame rate thirty frames per second. We encode the video into a
single-layer bit stream with 150 kbps, and divide the video into chunks of 0.1 second;
thus the chunk size before channel coding is M’ = 15 kilobits. For the WiFi network, we
apply the BCH code with rate 15/31. Hence the chunk size for wireless live-streaming
users is M = 31 kilobits. Among the ten live streaming users in the WiFi network, we
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Fig. 9.9 Utilities of cheating player and honest player versus number of cheating chunks in buffer

randomly choose two users to cooperate using the two-player cheat-proof wireless live
streaming cooperation strategy. We run the simulation forty times with forty different
pairs of users. We set g; = Ciax = 1, cppa2 = 0.8Cimax, CPpA2 :CPDA: Claprop = 1:0.9:0.4.
P,;, = 100 mW, the noise power is 20 mW, and the bandwidth is B = 200 kHz. §; and
8, in (9.18) are set to be the same, and equal to 0.1. We assume that one user is always
honest and the other user cheats on the buffer map information.

Figure 9.9 shows the averaged utilities of the cheating player versus the number of
hidden chunks in the buffer. The utility is averaged over all the simulation runs and all
the rounds. It is clear that the cheating user receives a lower payoff if he or she hides more
chunks in his or her buffer. Thus the best policy is to be honest, which demonstrates the
cheat-proof property of our cooperation strategy. In addition, from the simulation, a user
receives an averaged number of 3.7 chunks per second without cooperation; this number
is increased to 6.2 chunks per second per peer with cooperation. Thus, cooperation can
help significantly improve the received videos’ quality in wireless live streaming social
networks.

Optimal chunk request algorithm for P2P video streaming
with scalable coding

The previous sections discussed the cheat-proof cooperation stimulation strategies for
P2P live streaming over the Internet and wireless networks when nonscalable video
coding is used. In this section, we extend the cooperation strategy to a scenario with
layered video coding, in which different chunks may belong to different layers and thus
have different gains. In this scenario, an important issue is to schedule the chunk requests
to maximize each peer’s utility. We investigate the chunk-request algorithm for a two-
person P2P live streaming social network that optimizes three different video quality
measures in Section 9.4.2. We then design a chunk request algorithm considering the
tradeoff between different quality measures.
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Fig. 9.10 Example of a user’s buffer map

P2P video streaming with scalable video coding

In P2P video streaming social networks, peers belong to different domains with dif-
ferent uplad/download bandwidths, and scalable video coding is often widely adopted
to accommodate heterogenous networks. Scalable video coding decomposes the video
sequence into different layers of different priority. The base layer contains the most
important information in the video and is received by all users, and the enhancement
layers gradually refine the reconstructed sequence at the decoder’s side. Although scal-
able video coding provides service depending on peers’ bandwidth capacity, it also has
unique challenges when used in P2P live streaming social networks. The importance
of different layers is unequal, as higher layers cannot be decoded without successful
decoding of all the lower layers. Therefore, in a P2P live streaming social network
using scalable video coding, lower layers should be assigned higher priorities in the
chunk-request algorithm.

In this chapter, we encode a video into L layers, and assume that every layer has the
same bit rate B; bps. We further divide each layer into layer chunks of t seconds each.
Figure 9.10 shows an example of the buffer map at one user’s end. The gray blocks
represent chunks that are available in the buffer, the white blocks denote the missing
chunks, and D stands for missing chunks that are directly decodable after arriving. A
chunk is decodable if and only if all the lower layers with the same time index have been
decoded correctly.

For user j, we define a}j ) as the number of decodable chunks with time index ¢ that
are available in j’s buffer, and define the decodable chunk number vector as 4Y) =
{aﬁj), agj), . } . For instance, in the example in Figure 9.10, afi)l =1, aifé =0, a,({r)3 =
1, and afﬂl = 0. NV is the total number of chunks that peer j receives during his or her
stay in the P2P live streaming social network.

Video quality measure

With scalable video coding, the chunk-request algorithm should maximize the received
video quality. Here, we use the following three popular criteria to measure the video
quality.
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Chunk decodable rate: Every user in the P2P live streaming social network has
limited bandwidth available, and every peer wants to use it as efficiently as possible.
The chunk decodable rate RY) measures the bandwidth efficiency of the chunk-request
algorithm, and it is defined as

()
R A D4
NGO

It calculates the percentage of decodable chunks among all those that user j receives.

(9.26)

Video smoothness: A video stream with nearly constant quality gives a better user
experience than one with large variations in quality. The video smoothness measure S
is defined as

SN(4) 2 Z |a§j) — ai(f;)] . 9.27)

where |-| is the absolute value operator. SU)( 4) takes a larger value when the variance of
{at(j )} increases, and decreases when the difference between adjacent {aij )} is smaller. To
improve the quality and maximize the smoothness of the received video, user j should
request the chunks to minimize SU)(4).

Video discontinuity ratio: The discontinuity ratio /) of peer j is defined as the
percentage of instances that a video is undecodable and unplayable. With scalable video
coding, if all chunks in the base layer are available, then the video is decodable and
playable. Thus, the discontinuity ratio considers only the availability of chunks in the
base layer, and peer j’s video is unplayable at chunk time 7 if at(j ) = 0. So a) is defined
as

)
aV) & M, (9.28)
T
where I[-] is the indicator function. T/ is the duration for which player j stays in the

P2P live streaming network.

Optimal chunk-request algorithms

In this section, we first design three chunk-request algorithms that maximize the chunk
decodable rate, maximize the smoothness, and minimize the discontinuity ratio, respec-
tively. We then design the optimal chunk-request algorithm for P2P live streaming that
jointly considers the above three video quality measurements. Here, we consider the
simple scenario in which each user request at most one chunk per round; for the scenario
in which a user can ask for multiple chunks in one round, the analysis is similar and is
thus omitted.

Assume that player j’s current decodable chunk number vector is AY) =

{aﬁj ), aéj ), .. .}, and player j requests the chunk LC(#', ]) with time index ¢ and layer
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index /. Once j receives chunk LC(#', ), his or her new decodable chunk number vector
is 4'0) = [a;(”, a?, .| where a]) = a? forall i #¢. )" > a if LC(t',1) is

decodable, and 4’) = 4Y) if LC(¢', 1) is not decodable.

* Maximizing chunk decodable rate: We first design a chunk-request algorithm that
maximizes the chunk decodable rate. According to the definition in (9.26), chunks
that are not decodable do not give any immediate quality improvement. Thus, if peer
j requests and receives a chunk LC(¢#', [) with time index ¢’ and layer index /, the gain
that j receives is

g if LC(¢',1)is decodable,

] (9.29)
0 otherwise,

j =

where g > 0 is a constant. Therefore, maximizing the payoff function in (9.1) is
equivalent to always requesting chunks that are directly decodable after arriving and
thus g; = g. In the example in Figure 9.10, at the current state, requesting any one
of the D chunks, LC(t +1,2), LC(t +2,1), LC(t 4+ 3,2), and LC(¢ + 4, 1), will
maximize the player’s payoff.

* Maximizing video smoothness: We now consider the scenario in which the player
places more emphasis on the smoothness of the received video. If player j requests
and successfully receives the chunk LC(#, [), player j’s increment in the smoothness
is

SU(4) — SY(4) if LC(¢, 1) is decodable,
g = _ (9.30)
0 otherwise.

For a decodable chunk LC(#,l), we have SU(A)—SN(4)=S"1"1x

i=r
( |af’ ) _ ai("_ )1 | — |a;(j ) a;(_J; ) Therefore, to maximize the video smoothness, player

j should choose the decodable chunk LC(#',[) that maximizes the difference
S (|a(/) A e a;(f“). Using the buffer map in Figure 9.10 as an

i= \ 1%
example, the peer should request LC(¢ + 4, 1).

* Minimizing video discontinuity ratio: For the scenario in which peer j wants to
minimize the video discontinuity ratio, if player j receives a chunk LC(¢', [), his or

her gain is

g ifli=1,
g = | 031)
0 otherwise.

To maximize g;, the peer should request chunks in the base layer. For the example in
Figure 9.10, requesting either LC(t4+2, 1) or LC(t+4, 1) will maximize g;.

The preceding three algorithms use different video quality measurements and select
different chunks to maximize each individual criteria. To address the tradeoff between
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different video quality measurements, we combine the above three chunk-request
algorithms as follows.

For user j, for each chunk LC(¢', I) that is missing in j’s buffer but available at other
peers’ buffers, user j assigns a score SC(¢', ) as follows:

e User j first assigns an original score SC(¢',/) = ((t + L) —t")/L to the chunk
LC(t', 1), where ¢t is the current time and L is user j’s buffer size. It addresses
the stringent time constraint in video streaming, and gives higher priority to chunks
that are closer to their playback.

* If LC(¢,1) is decodable once it is received, then the score is updated as SC(¢, /) =
SC{', 1)+ w;.

o If g =300 (|a§f) — a9 = 1V —a;9}|) >0, then j updates SC(¢,1) =
SC(t, D+ wygs.

* If] =1, then SC(t', 1) = SC(t', ]) + ws.

Here, 0 < wy, wy, wz < 1 with w; + w; + w3 = 1 are the weights that the peer can
adjust depending on the importance of different video quality criteria. Then player j
chooses the chunk with the highest score and requests it from a peer who has this chunk
in his or her buffer.

Chapter summary and bibliographical notes

The P2P video streaming social network is one of the largest social networks over
the Internet; the performance of the streaming service depends heavily on user
cooperation. In this chapter, we investigate the incentives for cooperation in P2P
video streaming social networks and stimulate cooperation between any two users.
Also, because some users might try to cheat to increase their own payoff during
cooperation, the optimal cooperation strategies discussed in this chapter are also
cheat-proof.

Furthermore, as mobile devices with large computational capacity have become very
popular nowadays, we also study the optimal and cheat-proof cooperation strategies in
wireless P2P video streaming networks. To accommodate heterogenous networks and
mobile devices and to provide personalized service, we also investigate the optimal
chunk request algorithm for layered video coding under various video quality measures.

The P2P service model [79,81] was first studied to reduce the heavy load of servers.
Recently, several industrial large-scale P2P video streaming systems have been devel-
oped, including Coolstreaming [81], PPLive [79], PPStream, UUSee, and Sopcast. In
these P2P streaming systems, scalable video coding is widely adopted to provide higher-
quality service [94,123]. In the research on cooperation in P2P video streaming, a
rank-based peer-selection mechanism was introduced by Habib and Chuang [124], and
Tan and Jarvis [93] proposed a payment-based incentive mechanism, in which peers
pay points to receive data and earn points by forwarding data to others. Both works use
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reputation or micropayment-based mechanisms, which often demand a centralized archi-
tecture and thus hinder their scalability. The work of Liu e al. [94] proposed a distributed
incentive mechanism on mesh-pull P2P live video streaming systems without consider-
ing the cheating behavior. Interested readers can also refer to references [125—128] for
the development of media streaming over wireless networks.
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Optimal pricing for mobile video
streaming

Mobile phones are among the most popular consumer devices; the recent developments
of 3G networks and smart phones enable users to watch video programs by subscribing to
data plans from service providers. Because of the ubiquity of mobile phones and phone-
to-phone communication technologies, subscribers can redistribute the video content to
nonsubscribers. Such a redistribution mechanism is a potential competitor for the service
provider and is very difficult to trace, given users’ high mobility. The service provider
must set a reasonable price for the data plan to prevent such unauthorized redistribution
behavior and to protect the provider’s own profit. In this chapter, we analyze the opti-
mal price setting for the service provider by investigating the equilibrium between the
subscribers and the secondary buyers in the content redistribution network. We model
the behavior between the subscribers and the secondary buyers as a noncooperative
game and find the optimal price and quantity for both groups of users. Such an analysis
can help the service provider preserve the profit under the threat of the redistribution
networks and can improve the quality of service for end users.

Introduction

The explosive advance of multimedia processing technologies is creating dramatic shifts
in the ways that video content is delivered to and consumed by end users. Also, the
increased popularity of wireless networks and mobile devices has drawn a great deal
of attention in the past decade about ubiquitous multimedia access in the multimedia
community. Network service providers and researchers are focusing on developing
efficient solutions to ubiquitous access to multimedia data, especially videos, from
everywhere using mobile devices (laptops, PDAs, or smart phones that can access 3G
networks) [129]. Mobile phone users can watch video programs on their devices by
subscribing to the data plans from network service providers [130,131], and they can
easily use their programmable hand devices to retrieve and reproduce the video content.
Therefore, it is important to understand end users’ possible actions in order to provide
better ubiquitous video access services.

According to a survey on the popularity of mobile devices [132], almost every person
in developed countries has at least one cell phone. With such a high popularity and
the convenient phone-to-phone communication technologies, it is very possible for a
data-plan subscriber to redistribute video content without authorization. For example,
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some users who do not subscribe to a data plan may wish to watch TV programs while
waiting for public transportation, and some of them might want to check news from
time to time. Hence, these users have incentives to buy the desired video content from
neighboring data subscribers if the cost is lower than the subscription fee charged by
the service provider. Unlike generic data, multimedia data can be easily retrieved and
modified, which facilitates the redistribution of video content. In addition, subscribers
also have incentives to redistribute the content with a price higher than their transmis-
sion cost, as long as such an action will not be detected by the content owner. Because
of the high mobility, time-sensitivity, and small transmission range characteristics of
mobile devices, each redistribution action exists for only a short period of time and
is very difficult to track. Consequently, a better way to prevent copyright infringe-
ment is to set a price at which no subscriber will have the incentive to redistribute
the video.

The content subscribers and the secondary buyers who are interested in the video data
interact with each other and influence each other’s decisions and performance. They will
reach an agreement at the equilibrium price from which all users have no incentives to
deviate. Hence, such an equilibrium price will serve as the upper bound for the price
set by the network service provider to prevent copyright infringement. Because of the
small coverage area and limited power of each mobile device, a subscriber can sell
the content only to secondary buyers within his or her transmission range, and the
distance between users and the channel conditions dominates users’ decisions. In this
chapter, we consider the simple scenario in which one subscriber can sell the content to
only one secondary buyer, and propose a multiuser game-theoretic framework to analyze
the hybrid user dynamics in the live-video marketing social network.

The rest of the chapter is organized as follows. We introduce the system model
in Section 10.2. We then analyze the optimal strategies for all users in Section 10.3
and prove the existence and the uniqueness of the equilibrium when there is only one
secondary buyer. We analyze the mixed-strategy equilibrium for a scenario with multiple
secondary buyers in Section 10.4. In Section 10.5, the content owner sets the price to
maximize its payoff, but not to prevent the video redistribution among users.

System model

In this section, we introduce the channel, transmission, and rate—distortion models for
live video transmission over wireless networks.

The system diagram is shown in Figure 10.1. There are N, subscribers in the network,
trying to sell the video content to N, secondary buyers. At the beginning, each subscriber
sends his or her own price per unit transmission power, as well as the probing signal, to
secondary buyers. Because the price information contains only a few bits, we assume
that it can be received immediately and perfectly. The probing signal enables secondary
buyers to estimate the maximal achievable transmission rate. A secondary buyer must
decide how much power he or she wants to buy from each subscriber. As scalable video
coding is used widely in mobile video streaming [ 133], secondary buyers can purchase
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different coding layers of the video from different subscribers and combine these streams
during the decoding process.

Assume that the jth secondary buyer purchases part of the video stream from sub-
scriber S; with transmission power Pi(j ). The channel between them is a slow fading
channel with channel gain H;;, the distance between them is d;;, and the variance of the
AWGN at the receiver’s side is o>. Assume that the total bandwidth available for the
video redistribution network is #, which will be evenly allocated to all N’ subscribers
from whom secondary buyers purchase the video stream. The SNR and the maximal
achievable bit rate of the video stream between S; and B; are

Pi(] ) ]_Il ;

Ve

w
and le = mlogz (1 +

SNR;; =

SNRif), (10.1)
where y is the capacity gap.

For video streaming services, two commonly used objective quality measurements are
the video’s peak signal-to-noise-ratio (PSNR) and the streaming delay. Here, we adopt
the polynomial delay model, as developed by Aniba and Aissa [134]. The overall delay
Djp at the secondary buyers’ end is the network delay between the subscribers and the
service provider plus the maximal processing time of the subscribers. Therefore,

N+ K

Dp =D, < ) + max D, (i), (10.2)
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where N’ is the number of subscribers from whom the secondary buyers purchase the
video stream, and K is the number of other subscribers within the coverage of the
same base station who cannot establish a direct link to secondary buyers. M is the
maximal number of users that the network service provider can afford simultaneously.
D,((N'+ K)/M) is the network delay between subscribers and the service provider,
and D, (i) is subscriber i’s processing time.

Without loss of generality, in this chapter, we use the two-parameter rate—distortion
model [76], which is widely employed in a medium to high bit rate situation, and the
analysis for other models is similar. The two-parameter rate—distortion model is as
follows:

Distortion = ae P¥, (10.3)

where « and S are two positive parameters determined by the characteristics of the video
content.

A secondary buyer is able to purchase the video from different subscribers in two
different ways. Because the log function and the exponential function are convex over
RR™ and the exponential function is nondecreasing over R™, it is easy to prove that
buying different layers from different subscribers is a better choice, as buying all
layers from one subscriber is just a special case. Given the bit rate in (10.1), the
mean square error (MSE) of the video stream reconstructed by the secondary buyer
B is

/4 SNR;;
MSE; = aexp (—ﬂZR,-_,—) :aexp{—ﬂN/+ 1 Zlog2 (1 + . /)}

(10.4)

Optimal strategies for single secondary buyer

In this section, we focus on the scenario in which there is only one secondary buyer;
that is, Ng = 1. We model the behavior of the subscribers and the secondary buyer as
a Stackelberg game, and then analyze and prove the existence of the equilibrium that
leads to the optimal strategies for all users. When there is only one secondary buyer, we
can remove the superscript j for the secondary buyer index and have

SNR — D p W rog, (14 VR
i = T 5 i = 55 10 )
Jdo? N1 e Y

and MSE = aexp <—,BZR1'>
w SNR;
:aexp{—ﬂN/_l_llZlogz (1+ y )} (10.5)
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Video stream redistribution game definition

Because the video stream redistribution network is a dynamic system in which all
users have high mobility and join and leave at any time, it is very difficult to have a
central authority to control users’ behavior. In addition, because this redistribution is
unauthorized and illegal, to minimize their risk of being detected by the service provider,
the participating users (subscribers and secondary buyers) have no incentives to trust
one extra person, the central authority, and a distributed strategy is preferred.

Given the fact that there is only one secondary buyer, we propose a Stackelberg
game model to analyze how the secondary buyer provides incentives for subscribers to
redistribute the video stream, and find the optimal price and quantity that the secondary
buyer should offer. The ultimate goal of this analysis is to help the content owner set an
appropriate subscription fee such that the equilibrium of the game between subscribers
and the secondary buyers leads to negative payoffs. Thus, subscribers will have no
incentive to redistribute the video.

Before the game starts, each user, either a subscriber or the secondary buyer, will
declare his or her presence to all other users within his or her transmission range. The
game between subscribers and the second buyer is modeled as a Stackelberg game.

* Game Stages: The first stage of the game is the subscribers’ (leaders’) move. Each
subscriber i will set his or her unit price p; per unit transmission power as well as his
or her maximal transmission power Pi(m”x).

Then, in the second stage of the game, the secondary buyer (follower) will decide
from whom to buy the video and how much power he or she wants the subscriber to
transmit. The secondary buyer then pays each subscriber accordingly at the price that
the subscriber sets in stage 1.

* Utility function of the secondary buyer/follower: We first define the secondary buyer’s
utility function and study his or her optimal action. The secondary buyer B gains
rewards by successfully receiving the video with a certain quality. On the other hand,
B must pay for the power that the subscribers use for transmission. Let P; be the power
that the secondary buyer B decides to purchase from the ith subscriber ;, the channel
gain between S; and B is H;, and the distance between them is d;. Therefore, given
the video rate—distortion model, the utility function of the secondary buyer B; can be
defined as

K+1
T = gQ (PSNRB _PSNRmax) — 8D <DB - Dq <M>> —_ (Zpl})l _p0> ,
(10.6)

where go is a user-defined constant measuring the received reward if the PSNR of the
reconstructed video is improved by one dB, and g is a constant measuring the user’s
loss if the video stream is further delayed by one second. PSNR,,,, is the maximal
PSNR of the video that can be obtained by subscribing to the service, and p, is the
price set by the content owner.
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The preceding utility definition can be viewed as the difference between the utility
if the secondary buyer buys the video stream from the subscribers and the utility
if he or she subscribes to the data plan. The first term in (10.6) reflects the visual
quality difference between the subscriber’s video stream and the service provider’s
video stream. The second term considers the delay difference between the subscriber’s
video stream and the service provider’s video stream. Dy was defined in (10.2), and
D,((K + 1)/ M) is the delay profile if the secondary buyer subscribes to the data plan
and becomes an extra subscriber in the network. The third term indicates the price
difference. The two constants gp and gp control the balance between the gain and the
loss of the secondary buyer.

 Utility functions of the subscribers: Each subscriber S; can be viewed as a seller who
aims to earn the payment that covers his or her transmission cost and also to gain as
much extra reward as possible. We introduce a parameter c;, the cost of power for
relaying data, which is determined by the characteristics of the device that subscriber
S; uses. Hence, the utility of S; can be defined as

s, = (pi —ci) P, (10.7)

where P; is the power that subscriber i uses to transmit to the secondary buyer. Thus,
subscriber S; will choose the price p; that maximizes his or her utility ng,.

The choice of the optimal price p; is affected not only by the subscriber’s own
channel condition but also by other subscribers’ prices, because different subscribers
play noncooperatively and they compete to be selected by the secondary buyer. Thus,
a higher price may not help a subscriber improve his or her payoff.

Equilibrium analysis

This video stream redistribution game is a game with perfect information; the sec-
ondary buyer has perfect information about each subscriber’s action (the selected price).
According to backward induction [97], a game with perfect information has at least
one equilibrium. Therefore, the optimal strategies for both the secondary buyer and
subscribers exist and can be obtained by solving the optimal decision for each stage
using backward induction.

Secondary buyer’s optimal strategy
We analyze the game using backward induction, and first study the secondary buyer’s
optimal strategy for a given price list from the subscribers. The secondary buyer B aims
to determine the optimal power P; that B should buy from each subscriber to maximize
his or her own utility defined in (10.6).

Let L be the set including all subscribers who want to sell the video to the secondary
buyer. Given that the secondary buyer purchases transmission power P; from subscriber
S;, the secondary buyer’s received video rate is

R ST >0]+1zl°g2 (H T > (o9




10.3 Optimal strategies for single secondary buyer 201

where I[-] is the indicator function. Following the rate—distortion model and the trans-
mission rate given in (10.5), the first term in (10.6) can be rewritten as a function of the
transmission rate and equals to

g0 (PSNRp — PSNR,,4x)

2552 2552

7—1010 — | — ! R _Rmax )
wexp(BRz) B0 G ep (PR S0 R8T Fonar)

=go |10logy,
(10.9)

where g/Q = 108gplog, e, and Ry, is the video rate provided by the service provider.

Combining (10.5) and (10.6) with the preceding equation, we can formulate the utility
function of B as a function of {P;, Vi € L}. According to Aniba and Aissa [134], the
network delay of the 3G network is reciprocal to the network utilization percentage.
Hence, the optimal strategy for the secondary buyer is

max m, = 8o (Rp — Ryax) — &b (rlgla)é D,(i) + DB) - (Z piPi— po> ;
' "~ iel
st. Rg < Ryay, P < P, Viel,

MC MC

here Dj = _ ’
e S M K =S, I[P > 0] M—K-—1

(10.10)

and C is the network constant [134].

In (10.10) and (10.8), >>,., I[P, > 0] and max;c; D,(i)I[P; > 0] are piecewise
continuous functions and are not necessarily continuous cross different sets of S =
{i| P; > 0}. Therefore the optimization problem cannot be solved at once for the whole
feasible set and must be divided into subsets. Let P = [P, P, ..., Py,] be the power
vector, where P; is the power that the secondary user purchases from subscriber i.
The subset S(Nk) includes all possible scenarios in which the secondary buyer purchases
the video from N’ subscribers (3,, I[P; > 0] = N’), and where among these N’
subscriber k has the largest processing delay (k = argmax;c; D,(i)I[P; > 0]).

We can find the optimal power vector Pg{,{) for subset SSI\;) by making the first-order
derivative of 73 with respect to P; be zero:

0mp o Win2 A;
0P CONF11+4,P

—pi=0,VS eL, (10.11)

where A; = «/d;0?y/H;. Therefore, if the secondary buyer purchases from any N’
subscribers with the same maximal processing delay,

g/Q Win2 1
pi(N'+1) 4
is the optimal solution. Note that (10.12) can be proved to be the unique maximizer for
the subscriber set S(Nk) by finding the maximizer on the boundary. From (10.12), given

the same maximal processing delay and the same number of subscribers from whom the
secondary buyer is going to purchase, the second buyer purchases less from subscribers

P(S%) = , VSiel (10.12)
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with higher prices. Also, the secondary buyer tends to purchase more from subscribers
with better channels.

After the maximizer over each feasible subset is obtained, the secondary buyer should
choose the one that gives himself or herself the largest utility. Let P* be the optimal

decision of the secondary user; then P} = arg maxo<n’ s<n, 75 (P(SS\’,‘?)) .

Subscribers’ best strategies

Given the preceding optimal strategy P* for the secondary buyer, each subscriber selects
the optimal price p; that maximizes his or her utility. The optimal price p}(H;, d;) should
satisfy

87'[5. oP*
i — P* i — Cj 1 — 0
dpi e opi
st. pi<c¢ Viel, (10.13)

or be on the boundary, which means p; = ¢;. Given a set of subscribers S(Nk?, this
problem is a convex optimization problem and the solutions can be found numerically.
The subscriber is willing to redistribute the video stream only if he or she can profit
from the redistribution action. Therefore, a subscriber’s claimed price should be higher
than his or her cost.

Existence of the equilibrium

In this subsection, we prove that the optimal strategies of the subscribers p} in (10.13)
and that of the secondary buyers P* in (10.12) form an equilibrium. By definition, if
({ il P*) is an equilibrium, then p} is the best response of the subscriber i if other
subscribers choose {p}} j and the secondary buyer chooses P*, and P* is the secondary
buyer’s best response if subscribers choose the prices {p;}.

The optimization problem in (10.10) can be solved only by dividing the problem into
subproblems with different sets of subscribers from whom the secondary buyer actually
purchases the video stream; that is, S%) Therefore, here we first prove that given any
S(Nk,), (10.12) and (10.13) form an equilibrium for the secondary buyer and all subscribers
in S(,i,‘) Then the actual equilibrium is the one that maximizes the secondary buyer’s
utility among these solutions.

For any given S(Nk,), the optimization problem in (10.10) is equivalent to

max mp =goRp — Z pi b,

ieS([:{,f
st. Ry < Ryax, P < P, Vi e 8%,

W P.H,
h Rp = —— I 1+ —]. 10.14
where & k+1,zs<% °g2( +yﬁ,-02) (1019
1€ NG

We first show that the solution P* in (10.12) is the global optimum of (10.14)
by showing the objective function in (10.14) being a concave function in P. The
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second-order derivatives of 7y in (10.14) are

027y, B _g/QWan A?

= < 0,
aP? k+1 (1+ 4;P)?
82 ’
9T =0, and
IP,3P;
Dy 0wy ( 027}, )2 _ (g’QW1n2>2 A4 0
op? 9pP;  \dPdP; k+1 ) (1 + 4P (14 4,P)°

(10.15)

Moreover, 7 is a continuous function of P;. So for 0 < P; < Py, 7y is strictly
concave in P;, and jointly concave over P as well. Therefore, the solution P* in (10.12)
is the global optimum that maximizes the secondary buyer’s utility 7. Furthermore,
in the real scenario, the secondary buyer can gradually increase the power P; for each
subscriber to reach the optimal solution P* if there are information mismatches. For
example, the knowledge of channel coefficients may change slowly, and the secondary
buyer needs to adjust the strategy accordingly.

Now we show that when other subscribers’ prices are fixed, subscriber S; cannot
arbitrarily increase the price p; to get higher payoff. Given s\ , we take the first-order
derivative of the optimal P* (S(ji,{,) ) in (10.12) with respect to the price p;

aP(S%) W n2 1
PGy _ 80 = <0, (10.16)
ap,- k+1 pl-

which means Pi*(Sg\I;,)) is a decreasing function of p;. Such a phenomenon is reasonable
because the secondary buyer tends to purchase less from subscribers with higher prices.
Furthermore, when other subscribers’ prices and the power that the secondary buyer
purchases from each subscriber are fixed, the utility of subscriber 7 is a concave function
of the price p;. The first-order derivative of subscriber i’s utility ms, with respect to the
price p;, is

dms, g/QWanﬁ
api k+1 p?

0, (10.17)

and we can also derive the second-order derivative of subscriber i’s utility mg, with
respect to the price p;,

37y, 2cig’QWln2 1

apiz B k+1 pl:?’<

(10.18)

Therefore, s, is concave with respect to the price p;. Owing to the concavity of ng,,
subscriber S; can always find its optimal price pf. As a result, ({ pil P*) form an
equilibrium.
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Simulation results

In this section, we show the equilibrium of the video stream redistribution game under
different scenarios as well as the optimal price for the content owner.

In our simulations, the secondary buyer is located at the origin (0,0), and the sub-
scribers are initially uniformly distributed in a rectangle of size 100 meters by 100
meters centered around the origin. The pricing game is played 100 times, and each
subscriber changes its location each time the game restarts. For each subscriber, the
location change is normally distributed, with zero mean and unit variance. The direction
of each subscriber’s location change follows the uniform distribution. For all users, the
maximal transmit power P4 is 100 mW, and the noise level is 1078 W. The capacity
gap is y = 1, the total available bandwidth is W =1 MHz, gp = 0.1 and gp = 0.1 per
millisecond, and for subscriber S;, the cost per unit transmission power ¢; is a random
variable following uniform distribution in the range [0.05, 0.15]. The processing delay of
each subscriber D, (i) is also a uniformly distributed random variable in [0.1, 10.1] mil-
lisecond. We use the video sequence “Akiyo” in QCIF format encoded using the H.264
video codec. The resulted rate—distortion parameter 8 = 0.0416, and o = 6.8449. We
set the maximal PSNR, which is provided by the original content owner, as 35 dB, and
the corresponding maximal bit rate for Akiyo is R, = 84 kbps. For simplicity and
without loss of generality, the subscription price p, for the video sequence is set to be 0
so the optimal price for the content owner can be simply viewed as —mp. This implies
that if the secondary buyer’s utility is negative, he or she has incentives to purchase the
video stream from the content owner.

First we let M — K =50, and the number of subscribers K varies from 1 to 5; that
is, the network is not crowded and the number of subscribers is small when compared
with the maximal number that the network can afford. In Figure 10.2, we observe that
as the number of available subscribers increases, the competition among subscribers
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Fig. 10.3 Optimal video stream price versus qualities of network and streaming service

becomes more severe, so the optimal price for the content owner decreases. When there
are no more than three subscribers, the averaged utility of the subscribers does not vary
much, because in such cases, the secondary buyer is trying to purchase the maximum
video rate R,,, from all subscribers to increase the reconstructed video’s quality, and
these subscribers are not competing with one another. However, when there are more
subscribers, the secondary buyer can easily get the video quality close to PSN R4z,
and subscribers compete with one another to motivate the secondary buyer to purchase
from himself or herself. Such a phenomenon is the nature of a free market with more
sellers.

Next we examine the impact of network quality on the optimal price of the video
stream. From Figure 10.2 we can see that the competition among subscribers dominates
their own utilities, and the optimal price for the video stream (at the content owner’s
side) does not vary much when there are more than three subscribers. Therefore, here
we set the total number of subscribers as three; Figure 10.3 shows how the video bit
rate R, and network usage influence the optimal video stream price. In Figure 10.3,
M — K varies from 5 to 50, and a smaller M — K means that the current number of users
in the network is approaching the network capacity and the network is more crowded.
We select Ry, = 26.23, 32.91, and 36.34 kbps; the resulting maximum PSNRs are
30 dB, 35 dB, and 40 dB, respectively. From Figure 10.3, we can see that if the service
provider can offer a good video quality that the redistribution network cannot achieve,
the provider can charge more for the streaming service. Also, when the network is very
busy with a smaller M — K, the video delay dominates the video quality and, therefore,
the secondary buyer tends to purchase from a smaller number of subscribers, but each
subscriber can provide only limited video quality. Hence for the content owner, providing
a better-quality streaming service is critical when the network is busy and the content
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owner must maintain the network quality at a level at which the quality of the video
stream is not sacrificed. Furthermore, for a fixed R,,,,, when the network delay is small
enough — for example, M — K is less than 10 for PSNR =40 dB — the content price
starts to degrade as M — K increases, because the secondary buyer purchases the video
from the redistribution network. However, when the network delay is relatively small,
buying from more subscribers will not introduce too much delay, and secondary buyers
will be willing to purchase from enough number of subscribers to reach the highest data
rate Ry, and the maximum possible PSNR,,,,. But compared with purchasing from
the content owner, although the video rate is the same, delay will be slightly larger. For
instance, when M — K is larger than 20 and PSNR =30 dB, the optimal content price
starts to get slightly higher because buying from subscribers introduces a slightly larger
delay.

Multiple secondary buyers

In this section, we will extend the optimal strategy for the single secondary buyer case
to the scenario with multiple secondary buyers.

Game model

Assume that there are N, subscribers and N, > 1 secondary buyers. The first two stages
of the game are the same as in the single secondary buyer scenario: each subscriber
declares the price per unit energy p;, and then each secondary buyer B; chooses the
transmission power vector PY) = [Pl(j ). Pz(j ), P](Vj; )], where Pl-(j ) is the power that
secondary buyer j plans to purchase from subscriber ;. With multiple secondary buyers,
each subscriber i may receive several power purchase orders from different secondary
buyers. Here, we let one subscriber transmit to one secondary buyer only. Thus, in the
multiple secondary buyer scenario, the game model has an additional stage in which
each subscriber i chooses the secondary buyer B; who purchases the largest Pl-(j ) among
all the N, secondary buyers. Thus, for buyer B;, the set of subscribers who will transmit
video data to him or her is

Nj={x|PM™ < PV, ¥m # j, m € Np}. (10.19)

Because each subscriber will answer to the secondary buyer who purchases the highest
power, subscriber S;’s utility function is

75, = (pi — ;) max PY. (10.20)
b

For a secondary buyer B, the utility becomes

75, = gp(Rs — Rmax) — &0 (DB +  max Dp(i)> X P =, .

. 7 pU)
ieN;. P> o

(10.21)
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where

w PV Hy;
Rp = log, [ 1+ —=%]. 10.22
5 > g2< Yo (10.22)

Siew jen R > 01+1 55

Mixed-strategy equilibrium

Given the preceding definition of the utility functions, our next step is to find the sub-
scribers and the secondary buyers’ optimal decisions ({PV)*} jyi (P ) from which
no one in the system has an incentive to deviate.

Given the subscribers’ price list {p;}, for a secondary buyer B;, the choice of the
optimal power quantity P/ is not only influenced by the channel conditions and the
distances between subscribers and the secondary buyer B;, but also depends on the
number of subscribers from whom B; can purchase the video stream. For instance, if 5;
is the only secondary buyer within the transmission range of S;, B; would always tend
to use the optimal power in (10.12). If B; must compete with other secondary buyers,
he or she might need to increase the offer P[(j  or switch to other subscribers.

The deterministic way to find the optimal strategy is to model the competition among
secondary buyers as an auction problem. However, in a fast-changing mobile network,
secondary buyers may not have enough interactions to learn how much others value the
transmission power and the video bit stream. Also, without a central authorization, the
final bid price may not be revealed to all subscribers. Instead, we focus on finding
the optimal probability distribution over possible strategies and find the mixed-strategy
equilibrium of the game. We use backward induction to find the equilibrium.

When using backward induction, given the subscribers’ price list for unit transmission
power { p; }lN: 1»asintroduced in Chapter 4, the secondary buyer B; chooses the probability
function f;(P")) that maximizes his or her own payoff; that is,

ma’? E[T[B,v |{fm(P(m))}meN,,,m;éj], (1023)
f/(P(/))

where 7, is as defined in (10.21). Or, equivalently, each secondary buyer j seeks
/;(PY)) that satisifies

E [75, PSP Vnen,mzj] = C; Vj € Ny, (10.24)

where C; is a constant [97].
We use an iterative best response algorithm for the secondary buyers to find the
probability distribution { £, (P")},,cx, as follows.

* First calculate the equilibrium power PY)* of each secondary buyer B, based on (10.12)
as a single secondary buyer. Also, let f;(PY)) = §(PY) — PU*) for all PV) # PU*,

* For each j € N, given {fm(P“”))}mer,m#j, solve (10.24) and update fj(P(j)).

* Repeat the preceding step until the solutions converge.
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In the next subsection, we show the convergence of this algorithm by simulations.
After solving PU)* for a given the price vector {p;}.,, the optimal pricing {p#}"*, can
be calculated similarly by exhaustive search.

Simulation results

We consider the system setup in which secondary users are uniformly distributed in a
100-meter by 100-meter square centered around the origin. There are three subscribers
located at (25,10), (25,—10) and (0,—30), respectively. In our system setup, we fix
M — K =50 and K = 3. The game is played 100 times, and each secondary buyer
changes location each time the game restarts. For each subscriber, the location change is
normally distributed with zero mean and unit variance. The direction of each secondary
buyer’s location change follows the uniform distribution. The maximal transmit power
Pyax is 100 mW, and the noise level is 10~® W. The capacity gap is y = 1, the total
available bandwidth is W = 1 MHz, go = 0.1 and gp = 0.1 per millisecond, and the
cost per unit transmission power for each subscriber ¢; is a uniformly distributed in the
range [0.05, 0.15]. The processing delay of each subscriber, D, (i), is a random variable
uniformly distributed in [0.1, 10.1] millisecond. We use the video sequence “Akiyo” in
QCIF format as in the single secondary buyer scenario. The subscription price p, for the
video sequence is set to be 0 so the content owner’s optimal price can be simply viewed
as the negative of the secondary buyers’ average payoff.

In Figure 10.4, we observe that as the total number of secondary buyers increases, the
competition among the secondary buyers becomes more severe, and the optimal price
for the content owner increases. When there are fewer than three secondary buyers,
the averaged utility of the secondary buyers does not vary much, as each secondary
buyer has a high probability to receive the video from at least one subscriber. Comparing
the utilities of the subscribers and that of the secondary buyers when there are more than
three secondary buyers, it is clear that the increment in the subscribers’ utilities is much
smaller than the decrease in the secondary buyers’ utilities. Such a phenomenon occurs
because secondary buyers compete with one another and some secondary buyers may
not even receive anything from the subscribers.

Figure 10.5 shows the convergence speed of the iterated algorithm to find the mixed
strategy equilibriums. It is clear that the algorithm converges. With more users in the
network, the algorithm takes more iterations to find the equilibriums.

Optimal pricing for the content owner

In the previous sections, we discussed the equilibriums and the optimal pricing strategy
in the video redistribution network. Our assumption there is that the content owner
would like to set the price p, smaller than the equilibrium price in the redistribution
network. By doing so, the secondary buyers would have no incentives to purchase the
video content from the subscribers and will always subscribe to the data plan from
the service provider. However, such a strategy may not always maximize the total
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income — that is, the price times the number of subscribers. In this section, we consider
the scenario in which the service provider’s goal is not prevention of video redistribution
but rather maximization of his or her own income. We include the service provider as a
player in the game and find his or her optimal strategies.

Pricing game model and evolution dynamics

Here, we model the video pricing problem for the content onwer as a non-cooperative
game, which can be played several times. For example, in practical scenarios, the service
provider can always change the price if the total income is below the expectation. Also,
even when the price is fixed, mobile users can change their minds on whether to subscribe
to the data plan or purchase from other subscribers. Such natural repetitions help the
players find the equilibrium.

The basic elements of the game are listed as follows.

* Game stages: In the video pricing game, the first mover is the service provider, who
first sets the price of the video content p,. Then N, mobile users who are interested in
the video content decide whether to subscribe to the video streaming service. Because,
based on the analysis in Sections 10.3 and 10.4, redistribution of the video content is
possible, mobile users also take into consideration the possible payoffs that they can
get in the redistribution network when making the decision.

* Utility function of the service provider: Obviously, the content owner’s utility is price
times the number of subscribers,

Te = Po X Ny, (10.25)

where Ny is the number of subscribers. With a higher price, there will be fewer
subscribers and a smaller Ny, especially when it is possible for mobile users to receive
the video content from the redistribution network. Therefore, the service provider
cannot arbitrarily increase the content price p, and must consider mobile users’
utilities.

* Utility function of the mobile users: Each mobile user in N, has the choice to pay
P, to subscribe to the data plan, or to purchase the content from other subscribers
instead. Assume that among the N, mobile users, N; > 0 of them subscribe to the
data plan, and the remaining N, = N, — N; > 0 users decide not to. Let wy(Ny, Np)
and w5 (Ns, Np) be the utilities that a subscriber and a secondary buyer can get from
the redistribution network as in Section 10.4, respectively.

If user i decides to subscribe to the data plan, then his or her utility contains two
parts. The first part is from the subscription to the streaming service, wherein he or
she enjoys the video content with higher quality and shorter delay at a cost of the
subscription fee. The second part is from the redistribution of the video to secondary
buyers. Hence, if user i chooses to become a subscriber, his or her utility is

K+1

i (s, Ny, Np) = my(Ng, Np) + g0i * PSNRyax — gpi Dy (M> — po, (10.26)
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where go; is user i’s gain per dB improvement in PSNR of the reconstructed video,
and gp; is user i’s cost-per-second delay in receiving the bit stream. The first input
parameter s in 77; (s, Ny, Np) denotes the action “subscribe.” Note that 7, (N;, Np) = 0
if Ny or N; equals to 0.

If user i chooses not to subscribe to the data plan, his or her utility comes only from
the redistribution network by purchasing the video content from subscribers; that is,
the user gains nothing from the service provider, but also pays nothing to the service
provider. Hence, the

mi(n, Ny, Ny) = goPSNRp — gpDp — Z p,-Pj(.")
JEN]
K+1

:nB(Ns» Nb)+ng * PSNR 4% _gDiDq ( M

) — Py, (10.27)

where the first input » in 7;(n, Ny, N;) denotes the action “do not subscribe.” Note
that 7; (n, Ny, Np) = 0 if N or N, equals to 0.

To analyze this game, we first investigate the equilibrium strategy of the mobile
users given the content price p,. As mentioned earlier, this pricing game can be played
repeatedly and mobile users may use their previous experience to adjust their strategies
accordingly. Therefore, a stable strategy for all mobile users that is robust to mutants of
users’ strategies is preferred in the pricing game. To find the stable equilibrium, we will
use the evolutionary game theory introduced in Chapter 4 to analyze the evolution of
the mobile users’ behavior and derive the evolutionarily stable equilibrium, which leads
to the optimal price of the video content.

Because each mobile user is not certain of other users’ decisions, he or she may try
different strategies in every play and learn from the interactions. For example, a mobile
user may try to change from “subscribe” to “do not subscribe” and observe whether
his or her utility received from the redistribution network is satisfactory. During such a
learning process, the percentage — that is, the population share — of players using a certain
pure strategy (“subscribe” or “do not subscribe”) may change. The stable percentage of
mobile users that chooses to subscribe to the data plan is what we are interested in.

The population evolution can be characterized by replicator dynamics as follows: At
time #, let N;(¢) denotes the number of mobile users that subscribe to the data plan. Then
the subscribers’ population state x,(¢) is defined as
N; (1)

N, a
and x,(¢) = Np(t)/N, = 1 — x,4(¢) is the secondary buyers’ population state. By repli-
cator dynamics, the evolution dynamics of x,(¢) at time ¢ is given by the differential
equation

x5(t) = , (10.28)

Xy = n[ﬁs(xs) - ﬁ(xs)]xm (1029)

where x; is the first-order derivative of x,(#) with respect to time ¢, 77,(x;) is the average
payoff of mobile users who subscribe to the data plan, and 77 (x;) is the average payoff of
all mobile users; 7 is a positive scale factor. We can see that if subscribing to the data plan



212

10.5.2

Optimal pricing for mobile video streaming

can lead to a higher payoff than the average level, the probability of a user switching
to “subscribe” will grow and the growth rate x;/x; is proportional to the difference
between the average payoff of subscribers 7,(x,) and the average payoff of all mobile
users 7T (x,). The other intuition behind x; is that x; can be viewed as the probability that
one mobile user adopts the pure strategy “subscribe,” and the population state vector
x = {x;(¢), xp(¢)} is equivalent to a mixed strategy for that player. If subscribing to
the data plan results in a higher payoff than the mixed strategy, then the probability
of subscribing to the data plan should be higher, and x, will increase. The rate of the
increment is proportional to the difference between the payoff of adopting the pure
strategy “subscribe” and the payoff achieved by using the mixed strategy x = {x;, x5}.

Given the evolution dynamics formulated earlier, in the following sections we derive
the evolutionarily stable equilibrium among mobile users in different scenarios.

Analysis of pricing game with homogeneous mobile users

A strategy is an evolutionarily stable strategy (ESS) if and only if it is asymptotically
stable to the replicator dynamics. In the pricing game, when time goes to infinity, if
(10.29) equals zero, then x is the evolutionarily stable equilibrium. In this subsection,
we first focus on the scenario in which all mobile users value the video equality in the
same way and gp; = go; = gp and gp; = gp; = gp for all i, j € N,. The scenario in
which different mobile users have different values of the video quality is analyzed in the
next subsection.

Let Q = gp * PSNR,,4x — gDDq(%) — Po; then in the homogeneous case, the util-
ities of the subscribers and the secondary buyers are

7T(S, NS» Nb) = nS(Ms Nb) + Qv and T[(na Ms Nb) = nB(N51 Nb) + Qa (1030)

respectively. Mobile users are homogeneous and they will have the same evolution
dynamics and equilibrium strategy. Given that x; is the probability that a mobile user
decides to subscribe to the data plan, the averaged utilities of the subscribers and the
secondary users are

Na

N .
A=) ( , )x;(l —x) V(s i, Ny — i),

1

i=0

N, N

and  7,(x,) = Z ( f‘)x;‘(l —x)N " g(n, i, N, — i), (10.31)

1

i=0

respectively. The average utility of all mobile users is
TT(x5) = X - s (x) + Xp - Tp(oxs). (10.32)
Given the above, (10.29) can be rewritten as

Xy = N[ (xs) — 7T (xg)]%s

= [ (xs) — Tp(Xs)]xpxs. (10.33)
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In the equilibrium x ¥, no player will deviate from the optimal strategy, indicating x; = 0
in (10.33). We can then obtain the equilibria, which are x; = 0, x; = 1 or x; = 7T3(x5) —
7Tp(xs). To verify that they are indeed ESSs, we will show that these three equilibria
are asymptotically stable; that is, the replicator dynamics (10.29) converge to these
equilibrium points.

The first step is to guarantee that x(¢) + x,,(¢) = 1 for all #, which means that the sum
of the probabilities of a mobile user subscribing to the data plan or not equal to one. We
can verify it by summing up (10.29) with the reciprocal dynamic function of x,, which
is

Xp = n[7p(xp) — T (xX5)]xp. (10.34)
Combing (10.29) and (10.34), we have
Xp+ Xy = n[xsﬁs(xs) + xbﬁb(xb) - (xs + xb)ﬁ(xs)] = 0. (1035)

Recallthat 7 (xy) = x5 X 73 (xg) + (x,) X 7Tp(x;5), and x;(0) + x,(0) = 1; the above equa-
tion is equivalent to x,, + Xy = 0. As a result, x;(¢) + x,,(¢) = x,(0) + x,(0) = 1 for all
t in the evolution process.

Next we need to show that all the non-equilibrium strategies of the pricing game
will be eliminated during the evolution process. If the replicator dynamic is a myopic
adjustment dynamic, then all non-equilibrium strategies will be eliminated during the
process. A dynamic is a myopic adjustment if and only if

Z xaﬁ(xa’ X_4) =0, (10.36)

acA

where A is the strategy space, x, is the population of users adopting pure strategy a, and
(x4, Xx_,) is the average payoff of users adopting pure strategy a. For our optimal pricing
game, the strategy space is A = {s, b}, where s means “subscribe” and » means “do not
subscribe” and be a secondary buyer. Combining (10.29) with (10.34) and (10.32), we
have

Z XaTa(Xa) = Z N7 (xa) — 7T (xs) X0 Ta(xa)

a€ls,b} a€ls,b}

Z n | Talxa) — Z Xa g (Xa) | XaTa(Xq)

ae{s,b} a'€{s,b}

N Y Xafg(a) = | Y XaFalxa)| ¢ =0. (10.37)

ae{s,b} a€{s,b}

In (10.37), the last inequality is from Jensen’s inequality, which says (a;x; + ax;)* <
al)cl2 + a2x§ with @y + a, = 1 and x?2 being a concave function of x. Therefore, the
reciprocal dynamic of the pricing game in (10.29) is a myopic adjustment and will
eliminate all non-equilibrium strategies.
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From (10.33), X has the same sign as 77;(x;) — 75(xs). According to the discussions in
Sections 10.3 and 10.4, 77,(x;) is a decreasing function of x, and 7, (x;) is an increasing
function of x,. Therefore, when x; goes from 0 to 1, the sign of x; either does not change
or changes only once.

* When 774(xy) > 7p(xy) forall x; € [0, 1], in the evolution process, x; = dx(¢)/dt > 0
for all ¢, and (10.29) converges to x;, = 1, which is an ESS.

e If77(xy) < 7p(xy) for all x; € [0, 1], in the evolution process, x; = dx(¢)/dt < 0 for
all ¢, and (10.29) converges to x; = 0, which is the ESS in this scenario.

* When 7,(x,) — p(xs) = 0 has one and only one root, x}, and (10.29) converges to
the ESS x.

Therefore, for each price p, set by the content owner, we can find the stable number
of subscribers Ny = N, - x], from which we can calculate the service provider’s utility.
Hence, given the ESS of the mobile users, by backward induction, the service provider
can easily choose the optimal content price to maximize his or her own payoff.

Analysis of pricing game with heterogeneous mobile users

In the heterogeneous scenario in which different mobile users value video quality differ-
ently, it is very difficult to represent the average payoff of the subscribers and that of the
secondary buyers in a compact form. Hence, we start with the simple two-person game
and find its ESS. We then extend the ESS into the scenario with multiple heterogeneous
mobile users.

We first start with the two-player game. Assume that there are two mobile users with
different {go;, gpi, ¢;}. If both of them decide not to subscribe to the data plan, then
they pay nothing and gain nothing from the service provider. Also, because there are
no subscribers, the redistribution network does not exist, and both players’ utilities are
0. If both decide to subscribe to the data plan, then the redistribution network does
not exist either, as there is no secondary buyers. In this scenario, the utility of player
iis Qi =goi * PSN Ryux — gpiDy (%) — po. If player 1 becomes a subscriber but
player 2 decides not to subscribe, then player 1’s utility is Q| + 75, and player 2’s utility
is my. Here, my and my, are the utilities that user 1 and 2 get from the redistribution
network as a seller and a buyer, respectively, and their calculation is the same as that in
Section 10.3 and Section 10.5. When only player 2 subscribes to the streaming service,
the analysis is similar, and we can obtain the matrix form of the game shown in Table
10.1. In Table 10.1, each row represents user 1’s decision, and each column represents
user 2’s decision. For each entry in the table, the first term is user 1’s payoff, and the
second term is user 2’s payoff.

Let x; and x; be player 1 and 2’s probability of adopting the pure strategy “subscribe,”
respectively. Then the expected payoff 7 (s) of user 1 by always playing “subscribe” is

(s, x2) = O1x2 + [O1 + 7mi](1 — x32), (10.38)
and the expected payoff of player 1 when he or she plays the mixed strategy x; is

T1(x) = O1x1x2 + [O1 + s lx1 (1 — x2) + (1 — x1)x2. (10.39)
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Table 10.1 Matrix form of the pricing game with two
heterogeneous mobile users

Subscribe Do not subscribe

Subscribe (01, 0») (O1 + 1y, m2p)
Do not subscribe (15, Q2 + 725) 0,0)

Then, we can write the reciprocal dynamics of x; as
xp =x1(1 =x)[(Q1 + 715) — (15 + 7T1p)x2], (10.40)
and similarly,

Xy = x2(1 — x2)[(Q2 + 725) — (w25 + 725)x1]. (10.41)

An equilibrium point must satisfy x; =0 and x; =0; then from (10.40) and
(10.41), we get five equilibria (0,0), (0,1), (1,0), (1,1), and ((Q2 + 725)/ (25 + 72p),
(01 + my)/(w15 + 715)).

If we view (10.41) and (10.40) as a nonlinear dynamic system, then the above five
equilibria are ESSs if they are locally asymptotically stable. The asymptotic stability
requires that the determination of the Jacobian matrix J be positive and the trace of
J be negative. The Jacobian matrix J can be derived by taking the first-order partial
derivatives of (10.41) and (10.40) with respect to x; and x,, and

(1 —2x1)Dy —x1(1 — x1) (w15 + 71p)

/= —x2(1 = x2)(725 + 7025) (1 —2x2)D, ’ (10.42)
where Dy = (Q1 + mi5) — (w15 + mip)x2 and Dy = (Q2 + 7o) — (25 + 2p)x1. By
jointly solving det(J) > 0 and trace(J) < 0, we can have the following optimal sub-
scription strategies for mobile users under different scenarios:

* When O + 7y < 0 and O, + w5 < 0, there is one ESS, (0,0), and both users tend
to not subscribe to the data plan.

* When Q) —mp < —(Q2 + m) and (O + mo )(Q1 — myp) < 0, there is one ESS,
(0,1), and the strategy profile user 1 and user 2 adopt converges to (not subscribe,
subscribe).

* When Q) —mp < —(Q1 + ) and (Q) + wi)(Q2 — map) < 0, there is one ESS,
(1,0), and user 1 tends to subscribe while user 2 tends to not subscribe to the data plan.

* When Q) — 1, > 0 and Q, — 7y, > 0, there is one ESS, (1,1), and both users tend
to subscribe to the data plan.

We can see that when Q) is higher with larger go1 and gp1, user 1 tends to subscribe to
the data plan.

Based on this discussion on the ESSs of the two-player game, we can infer that the users
who value the video quality more (with higher go; and gp;) would intend to subscribe to
the data plan. Users with smaller gy, and gp; would tend to choose “do not subscribe™
and become secondary buyers. However, if the content price p, is too high, so the
subscription gives all users a negative payoff, no player would subscribe to the service.
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g.10.6 Utilities of the service provider versus network quality

Simulation results

Here, we verify the derived ESS and show by simulation results the optimal price for
the content owner if he or she wants to maximize his or her utility. We test with the
homogeneous scenario that there are six mobile users who are initially uniformly located
in a 100-meter by 100-meter square centered around the origin. All six mobile users
have the same gain weighting factors gp = 0.1 and gp = 0.1 per millisecond. The
pricing game is played 100 times, and each secondary buyer changes location after the
game restarts. The distance between each secondary buyer’s locations in two consecutive
games is normally distributed with zero mean and unit variance. The direction of each
secondary buyer’s location change follows the uniform distribution. Other simulation
settings are the same as in Section 10.4. We use the video sequence “Akiyo” in QCIF
format, as in the single secondary buyer scenario. The mobile users changes their
strategies and evolute according to (10.29).

Figure 10.6 shows the content owner’s utility when the PSNRs of the video stream
are 30 dB and 40 dB, respectively. M — K reflects how crowded the mobile network is.
It is clear that if the content owner provides better-quality network or video, its payoff
can be increased. Also, for lower-quality videos, the content owner’s utility saturates
earlier than high-quality videos with respect to network quality. This means that if the
content owner decides to offer low-quality videos, to maximize its utility, it tends to
offer low-quality network as well.
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Chapter summary and bibliographical notes

In this chapter, we investigate the cooperation among mobile phone users to balance the
price of mobile data plan service. We first analyze the equilibrium price of the video
stream redistributed by the subscribers, given the number of subscribers and secondary
buyers. Consequently, the results provide a guideline for the content owner to prevent the
redistribution behavior. The redistribution behavior is modeled as a Stackelberg game,
and we analyze the optimal strategies of both subscribers and secondary buyers. From
the simulation results, a secondary buyer will tend to buy more power from subscribers
with better channels to maximize his or her utility. If the total number of the subscribers
increases, a secondary buyer can obtain a larger utility value, and the payment to
each subscriber is reduced owing to more severe competition among the subscribers.
Furthermore, when the mobile phone network is crowded, a secondary buyer tends to
purchase the video stream from fewer subscribers, and the price for the streaming service
can be higher. Nevertheless, the service provider should always offer a high-quality video
stream to prevent the illegal redistribution of video via such redistribution networks.

Next, we extend the model by including the content owner in the game and letting the
mobile phone users decide whether to subscribe to the data plan. In the extended model,
we model the dynamics between the content owner and users who are interested in the
video content, and study how the content onwer (the service provider) sets the price for
the data plan to maximize his or her overall income. We use the evolutionary game theory
to analyze the evolution of the mobile users’ behavior and derive the evolutionarily stable
equilibrium, which leads to the optimal price for the content owner to maximize his or
her total income.

To our knowledge, there is no related work on this topic to date. Interested readers can
refer to the following articles for the technologies of video streaming service over mobile
devices. Research has been focused on developing efficient solutions for the ubiquitous
access to multimedia data and in particular videos, from everywhere with mobile devices
(laptops, PDAs, or the smart cellular phones that can access 3G networks) [129]. One
of the most popular multimedia content over mobile phones is the video streaming
service [130,131]. To accommodate heterogeneous network conditions and devices,
scalable video coding is also widely used in mobile video streaming [133].
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Cheating behavior in colluder
social networks

Until now we have discussed cooperation stimulation and how side information changes
the behavior dynamics in various types of media-sharing social networks. For colluder
social networks, as discussed in Chapters 5 and 8, before collusion, colluders need to
reach an agreement regarding the fair distribution of the risk of being detected and
the reward from illegal usage of multimedia. Chapters 5 and 8 analyze how colluders
bargain with one another to achieve fairness of collusion, assuming all colluders report
their private information (their received fingerprinted copies) honestly.

In reality, some colluders might break their fair-play agreement. They still wish to
participate in and receive reward from collusion, but they do not want to take any risk of
being detected by the digital rights enforcer. To achieve this goal, they may lie to other
attackers about their fingerprinted copies [135]. For example, they may process their
fingerprinted signals before multiuser collusion and use the processed copies instead of
the originally received ones during collusion. The cheating colluders’ goal is to minimize
their own risk while still receiving reward from collusion. Therefore, they select the most
effective precollusion processing strategy to reduce their risk.

Precollusion processing reduces the cheating colluders’ risk, and makes other attack-
ers have a higher probability than the cheating colluders of being detected. It is obvi-
ously a selfish behavior. In some scenarios, precollusion processing can also increase
other attackers’ probability of being detected; this is not only selfish, but also mali-
cious. Therefore, to protect their own interest, colluders must examine all fingerprinted
copies before collusion, detect and identify cheating colluders, and exclude them from
collusion.

From a traitor-tracing perspective, it is important to study this problem of traitors
within traitors in multimedia fingerprinting and understand the attackers’ behavior dur-
ing collusion to minimize their own risk and protect their own interest. This investigation
helps us have a better understanding of multiuser collusion and enables to offer stronger
protection of multimedia. In this chapter, we use the equal-risk collusion and the simple
collective fingerprint detector in Chapter 5 as an example, investigate possible strate-
gies that cheating colluders may use to minimize their own risk, and evaluate their
performance.
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Fig. 11.1 Applying temporal frame averaging during precollusion processing

Traitors within traitors via temporal filtering

For a cheating colluder to further reduce his or her own probability of being detected,
one possible solution is to attenuate the energy of the embedded fingerprints before
multiuser collusion. An example is to replace each segment of the fingerprinted signal
with another, seemingly similar, segment from different regions of the content, such as
averaging or swapping consecutive frames of similar content.

In this section, we take temporal filtering of adjacent frames as an example, and
analyze its effects on the cheating colluder’s probability of being detected, as well as on
the perceptual quality of the fingerprinted copies. We consider a simple scenario in which
all colluders receive fingerprinted copies of the same quality. When different colluders
receive copies of different quality, the analysis is similar and is this not repeated.

Precollusion processing using temporal filtering

In this chapter, we assume that the cheating colluder uses a simple linear interpolation-
based frame average during precollusion processing. A cheating colluder can also apply
more complicated motion-based interpolation, and the analysis will be similar. For a
cheating colluder i, assume that {X( }j=12,.. are the fingerprinted frames that he or
she received from the content owner, and X(J”)l, Xy‘) and XE’_‘:I are three consecutive
frames. As shown in Figure 11.1, for each frame j, colluder i; linearly combines the
current frame X(]-"‘), the previous frame Xg and the next frame X(”)1 with weights

A;(0), A;(—1), and A ;(+1), respectively, and generates a new frame Xi- where

XU == - XU+ 250) - X 4 25(+1) - XGY (11.1)
In (11.1), 0 < A;(=1),1;(0), A;(+1) < 1 and A ;(—1) + A;(0) + A ;(+1) = 1. For sim-
plicity, we let A ;(—1) = A;(4+1) = (1 — A1;(0))/2, and give equal weights to the two
neighboring frames. Colluder i; repeats this process for every frame in the sequence and
generates {iyl)}jzl,z,.... When 2;(0) =1, )N((ji') = X(”) and it corresponds to the scenario
in which colluder i; does not process his or her copy before collusion.
We assume that there is only one cheating colluder and other colluders do not discover
his or her precollusion processing actions. The analysis is similar when there are multiple
cheating colluders. In this scenario, under the averaging collusion, the jth frame in the
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colluded copy is
D Sescuan X7 (=1 - X5 4+ 450) - XY (1) - XY
V= ¥ + < +n;, (112)

where n; is additive noise.

Risk minimization and tradeoff analysis

During precollusion processing, the cheating colluder wishes to generate a new copy
of high quality and minimize his or her own risk of being detected. In this section, we
first analyze the quality of the newly generated frames {f(g‘)} and calculate the cheating
colluder’s probability of being detected, and then study the selection of the optimal
weight vector [A1(0), 1,(0), .. .].

We first analyze the perceptual quality of the processed copy. If )N(y‘) is generated as
in (11.1), then the MSE between )N((j”) and X;”) is

< i 1—2;00)\°
MSE1=HX$”—XE-"“2=(2’) .
where ¢ = 411X 117+ 11X 1P + 11X 1P — 40X, X5Y)

— 4P XD 20X X)), (11.3)

In (11.3), ||X(”)|| is the Euclidean norm of X( " and (X(’L)l, X(”)> is the correlation

between X! 1)1 and X(") From (11.3), a larger A;(0) implies a smaller M/ SE;. Conse-
quently, from the perceptual quality’s point of view, colluder i; should choose a larger
1;(0). Compared with X(”) X(”) has the best possible quality when ;(0) =1 and
colluder i; does not apply precollus1on processing.
Now, we analyze the cheating colluder’s probability of being detected. Given the
colluded copy V;- as in (11.2), the fingerprint extracted from the jth frame is

(i) ) 0] (i)
v Siesciz, W' N A=W 405000 - WY+ a(+1) - WY d,
I K K a
(11.4)

where d; contains terms that are independent of the embedded fingerprints {W(ji)}.
With orthogonal fingerprint modulation, given the colluder set SC and the index
of the cheating colluder i;, if the detection noise d; is ii.d. and follows Gaussian
distribution A (0, ¢2), it is straightforward to show that the detection statistics 7 ﬁ,’ )in
(2.2) are independent Gaussian with marginal distribution N(u®, of). The detection
statistics have zero mean for an innocent user and positive mean for a guilty colluder.
Consequently, given a user i, the probability of accusing this user if he or she is innocent
is Py, = Q(h/o,), and the probability of capturing user i if he or she is guilty is P;) =
O((h — n)/o,). O(-) here is the Gaussian tail function and # is the predetermined
threshold. For a fixed Pp,, the cheating colluder 7; has a smaller probability of being
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detected when p() is smaller, and minimizing his or her probability of being detected
is equivalent to minimizing the mean of his or her detection statistics.
For the cheating colluder iy,

J

)
a _ (Wih,
o -

2K/ 3, [TWI2

2SI - W0 W) - W WD
2K\/S7 1IW |2

In (11.5), ||W§.i')|| is the Euclidean norm of W(ji'), (W?‘_)l, W(;‘)) is the correlation
between W(j’L)l and Wy‘), and (Wy‘), W(;J‘r)l) is the correlation between W(jil) and W(j'jr)l
From the fingerprint design in Section 2.3, (WyL)l, Wfii])) < (W?‘), W?)) = ||W§-“)||2
and (WY W) < [WUV| 120 Thus, if 21(0), ..., 4,-1(0), &;51(0), . .. are fixed,
is a nondecreasing function of 1 ;(0) and is minimized when A ;(0) = 0. Consequently,
from the point of view of risk minimization, a smaller A ;(0) is preferred.

From this analysis, we have seen that during precollusion processing, a cheating
colluder should choose larger weights {A;(0)} to minimize the perceptual distortion
introduced into his or her fingerprinted copy, whereas smaller weights {1 ;(0)} are pre-
ferred to minimize the risk of being captured. A cheating colluder wishes to minimize
his or her probability of being detected while still maintaining good quality of the fin-
gerprinted copies. Thus, for a cheating colluder i, the selection of the weight vector
[A1(0), 12(0), . ..] can be modeled as

(i) (i) (i)
WD)+ Wi W)

where 1

+2,(0) x

: (il) — (il)
min = .
{%;(0)} ’ Z“-’
J
s.t. MSE; <&, 0<2,(0)<1, j=1,2,..., (11.6)

where ¢ is the constraint on perceptual distortion. In our model of temporal filtering,
{7;(0)} for different frames are selected independently. Thus, minimizing ) over

. . . . C @i1) - .
the entire video sequence is equivalent to minimizing p;" in (11.5) for each frame j
independently. Therefore, the optimization problem in (11.6) is equivalent to, for each
frame j,

. (i)
min .
2;(0) K

st. MSE; <e, 0<2;(0) < 1. (11.7)

Given ¢; as defined in (11.3), we can show that the solution to (11.7) is

xj=max{o, 1—2~/e/¢j}. (11.8)



11.1.3

11.1 Traitors within traitors via temporal filtering 225

By using {47} as in (11.8) during temporal filtering, a cheating colluder minimizes his
or her own probability of being detected and ensures that the newly generated frames
have small perceptual distortion (MSE < &) when compared with the originally received
ones.

Simulation results

In our simulations, we use the first forty frames in the sequence “carphone” as an
example. At the content owner’s side, we adopt the human visual model-based spread
spectrum embedding, and embed fingerprints in the DCT domain. The length of the
embedded fingerprints is 159608. We generate independent vectors from Gaussian dis-
tribution N(0, 1/9), and then apply Gram—Schmidt orthogonalization. In each finger-
printed copy, fingerprints embedded in adjacent frames are correlated with each other,
and the correlation depends on the similarity between the two host frames.

On the colluders’ side, we assume that there are a total of 150 colluders. For simplicity,
we assume that there is only one cheating colluder and he or she applies temporal filtering
to his or her received copy as in (1 1.1) during precollusion processing. In our simulations,
we adjust the power of the noise term d; in (11.4) such that ||dj||2 =2| |W§-”| |2. Other
values will give the same trend.

Figure 11.2 shows the simulation results. For each frame j, PSNR; is defined as PSNR
of)N(y') compared with X;i‘). InFigure 11.2, {A7} are the solution of (11.8) and ¢ is chosen
to satisfy PSNR; > 40 dB for all frames. In our simulations, we consider four different
scenarios, in which A;(0) =1, 4;(0) = 0.8, 2;(0) = 7, and 2,;(0) = 0, respectively.
Note that A;(0) = 1 corresponds to the scenario in which the cheating colluder i; does
not process his or her copy before multiuser collusion.

Figure 11.2(a) compares the perceptual quality of {i?l)}, and Figure 11.2(b) plots the
cheating colluder i, ’s probability of being detected when {4 ;(0)} take different values. A
cheating colluder can reduce his or her own probability of being detected by temporally
filtering his or her fingerprinted copy before multiuser collusion. By choosing {A;(0)}
of smaller values, the cheating colluder has a smaller probability of being detected,
while sacrificing the quality of the newly generated copy. Therefore, during precollusion
processing, the cheating colluder must consider the tradeoff between the risk and the
perceptual quality.

In Figure 11.2(c), we consider two colluders, the cheating colluder #; and an honest
colluder i, who does not process his or her copy before collusion, and compare their
probabilities of being detected. From Figure 11.2(c), precollusion processing makes
colluder i, take a higher risk of being detected than colluder i} and increases the relative
risk taken by the honest colluders when compared with that of the cheating colluder.

To address the tradeoff between perceptual quality and the risk, a cheating colluder
should choose {1 ;(0)} as in (11.8). We compare the solution of {1} in (11.8) for different
sequences. We choose four representative video sequences: “miss america,” which has
large smooth regions and slow motion, “carphone” and “foreman,” which are moderately
complicated, and “flower,” whose high frequency band has a large energy and the camera
moves quickly. We choose the threshold ¢ in (11.8) such that PSNR; > 40dB for all
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Fig. 11.3 A7 in (11.8) for different sequences

frames in {iy‘)}. Figure 11.3 shows the solutions of (11.8) for various sequences. From
Figure 11.3, for sequences that have slow motion (“miss america”), a cheating colluder
can choose {1 ;(0)} with small values, around 0, without significant quality degradation;
for sequences that have moderate motion (“carphone” and “foreman™), A7 is around 0.5;
and for sequences with fast movement (“flower”), a cheating colluder must choose large
{A;(0)}, larger than 0.9, to ensure the high quality of the newly generated frames.

Traitors within traitors in scalable fingerprinting systems

As illustrated in Chapter 5, in scalable multimedia coding systems, for the same multime-
dia content, different users receive copies of different resolutions and quality, depending
on each user’s available bandwidth and computation constraints. In scalable multimedia
fingerprinting systems, in addition to applying temporal filtering to the received frames,
a cheating colluder can also change the resolution of his or her fingerprinted copy before
multiuser collusion. In this section, we investigate how cheating colluders behave before
multiuser collusion in scalable multimedia fingerprinting systems, and analyze their
performance.

Changing the resolution of the fingerprinted copies before collusion

Assume that ) contains the indices of the frames that a cheating colluder i; subscribed
to, and {X?)} jerun are the fingerprinted frames that he or she received from the content
owner. Before collusion, colluder #; processes his or her received copy and generates
another copy {X?l) }, whose temporal resolution is different from that of {X?l) }. Assume
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Fig. 11.4 Example of increasing the temporal resolution during precollusion processing.
F(il) = F[, and F(il) =FU Fel 0] Fez

that F(") contains the indices of the frames in {i(il) }and F@ £ F@)_ During collusion,

colluder 7; uses the newly generated copy {X( 1)} fn- instead of {X(ll }jerun. For sim-
plicity, in this section, we assume that the cheatmg colluders only change the resolution
of their received copies and do not further apply temporal filtering during precollusion
processing.

We consider a simple scenario in which Fi ¢ {Fp, Fp UF,, Fy UF, UFg,}. We
assume that there is only one cheating colluder i; who changes the frame rate of his
or her copy before multiuser collusion; our analysis can be extended to complicated
scenarios where there are multiple cheating colluders.

For a cheating colluder i; who changes the temporal resolution of his or her copy during

precollusion processing, we define the processing parameter as C P 2 (F @, p 1)> ,

where F@) contains the indices of the frames that colluder i, received from the content
owner and F) contains the indices of the frames in the newly generated copy {X( i) }If
F@) 5 F@) the cheating colluder i, subscribes to a lower-quality version and increases
the frame rate during precollusion processing. If F0) ¢ F@), colluder iy subscribes to
a higher-quality version and reduces the temporal resolution before multiuser collusion.

Increasing resolution before multiuser collusion

In this type of precollusion processing, a cheating colluder i; subscribes to a copy of
lower frame rate and generates a copy of higher resolution before collusion. Without
loss of generality, in this section, we consider the example in Figure 11.4, in which the
processing parameter is CP) = <F(i1) = F,, F) = F,UF, U Fez> . In this example,
the cheating colluder receives the fingerprinted base layer only, and generates a copy
{iyl)} with all three layers before collusion. He or she then tells the other colluders that

{)~((jil) }jeF,UF.UE,, is the copy that he or she received.

Precollusion processing of the fingerprinted copy: We first study how the cheating
colluder 7 increases the temporal resolution of his or her fingerprinted copy. We assume
that for every frame j € F1) = Fy in the base layer that colluder i| received, the cheating
colluder simply duplicates X}i‘ in the newly generated copy and we let X(") X(ji' ),



11.2 Traitors within traitors in scalable fingerprinting systems

45 T T T T T T
7z \ *
* * kg //& * *‘*/)\*/ Sa
v [ , / *\ /* . - , \
40} \y* 1 \K / Yol *7
. N
miss america
351 1
[any
Z 30t |
o
h —%— miss america
25+ carphone carphone e
+ flower
20} flower 1
15 B A L R T g
0 5 10 15 20 25 30 35 40

229

Index of frame

Fig. 1.5 Quality of the enhancement layers that are forged by the cheating colluder during
precollusion processing

Colluder #; also needs to forge frames )~(§’;)FIU F,, in the enhancement layers that he or

she did not receive. Assume that X(jil‘) and X(ji}‘) are two adjacent frames in the base
layer that colluder i; received. To forge a frame j, € F,; U F,; in the enhancement
layers where j; < j» < j3, we consider a simple linear interpolation based method and
let f((j"z‘) =\ .X%‘) + A ~X5§‘), where A = jj:ﬁ and A, = ﬂ Other complicated
algorithms, such as motion-based interpolation [136], can be used to improve the quality
of the forged frames, and the analysis will be similar.

Perceptual quality constraints: Now, we examine the perceptual quality of the forged
enhancement layers and study the quality constraints. To increase the frame rate of the
fingerprinted copy, the cheating colluder must generate frames in the enhancement layers
that he or she did not receive from the content owner. To cover up the fact that he or she
processed the copy before collusion and to make other colluders believe him or her, the
cheating colluder must ensure that the forged enhancement layers have high quality.

We consider the example in Figure 1 1.4 with processing parameter C P = (F,, F, U
F, UFp)with Fp, ={1,5,9,...}, F. ={3,7,11,...}and F, = {2,4,6,8,...},and
use the previous linear interpolation-based method.

For a cheating colluder i; in subgroup SC? and for a frame j € F,; U F,, in the

enhancement layers, define X;’“) as the fingerprinted frame ; that colluder i/ would have

received if he or she had subscribed to frame j. In our simulations, we choose X?') as
the ground truth and use the PSNR of )~((j"‘) when compared with Xy') to measure the
perceptual quality of the forged frames in the enhancement layers.

Figure 11.5 shows the results for the first forty frames of sequences “miss america,”
“carphone,” and “flower.” From Figure 11.5, for the sequence “miss america” with
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flat regions and slow motion, the cheating colluder can forge enhancement layers of
high quality. For the sequence “flower,” which has fast movement, the cheating colluder
can generate only low-quality and blurred enhancement layers. Therefore, owing to
the quality constraints, for complicated sequences with fast movement, the cheating
colluder might not be able to apply this type of precollusion processing and increase the
temporal resolution before multiuser collusion. Motion-based interpolation [136] can
be used to improve the quality. However, for some sequences with fast movement and
complex scene composition, such as “football” and “flower,” even with motion-based
interpolation, the cheating colluder still may not be able to forge enhancement layers of
good enough quality to use. Therefore, for those complicated sequences, the cheating
colluders may not be able to increase the resolution of their fingerprinted copies before
multiuser collusion.

Cheating colluder’s probability of being detected: To analyze the effectiveness
of this precollusion processing in reducing a cheating colluder’s risk, we compare the
cheating colluder’s probability of being detected when he or she increases the temporal
resolution with that when he or she does not process the fingerprinted copy before
collusion. Without loss of generality, we assume that the cheating colluder processes
his or her copy as in Figure 11.4 with parameter CPW = (Fp, Fp U F,1 U F,), and
use this example to analyze the impact of resolution change on the cheating colluder’s
probability of being detected.

Scenario 1: without precollusion processing

We first consider the scenario in which colluderi; does not apply precollusion processing,
and we assume that SC? = {i € SC : F) = F,} contains the indices of the colluders
who subscribe to copies of the lowest resolution and receive only the base layer from the
content owner; SC?¢! = {i € SC : FY = F, U F,;} contains the indices of colluders
who receive both the base layer and enhancement layer 1 from the content owner; and
SC ={j € SC : FY) = F, U F,; U F.,} contains the indices of colluders who receive
all three layers from the content owner. K?, K?¢! and K" are the number of colluders
in SCb, SC»¢!', and SC, respectively.

Given (K?, Kb¢! K"y and (Np, Ne1, N.»), colluders first check the constraints in
Table 5.1, and then choose the collusion parameters {8 }r=1.2,3 and {oy};=1 » according
to Table 5.1. In this scenario, for each frame j € F}, in the base layer, the extracted
fingerprint is

(i1) () (1) (i)
ﬂ W :31 W IBZ'Wj ,83 W
Y + > D ghe T X gar TV

ieSChii, ieSChel iescal
(11.9)

where n; is additive noise.

Following the detection procedure in Section 2.3, the detector observes that col-
luder i; received only the fingerprinted base layer from the content owner and,
therefore, the detector will use only fingerprints extracted from the base layer
to decide whether colluder i; is involved in collusion. The detector calculates
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Tji,i‘) = (Zjth (Y}, WE.’“)) /\/Zlth ||W§i‘)||2, compares it with the predetermined

threshold /4, and decides whether colluder i; is a colluder. From the analysis of Zhao
and Liu [137], with orthogonal modulation, given the colluder set SC and the extracted
fingerprint as in (11.9), if the detection noise n; is i.i.d. Gaussian NV (0, o2), the detection
statistics follow the distribution

p (T81SC) ~ N, o),

, ; JN
where (" = % > Wi = %aw. (11.10)
JEF)

Colluder i;’s probability of being detected is P(y') =0 (h_G—"ﬂm), where Q(-) is the

Gaussian tail function. In this scenarip, all colluders share the same risk, and their
probability of being detected equals P;‘).

Scenario 2: with precollusion processing

‘We then consider the scenario in which colluder i, increases the frame rate before mul-
tiuser collusion and assume that .§E’b ={ieSC: F )} contains the indices of colluders
who tell others that they received the base layer only; ﬁ’b’el ={ieSC:FO=F,U
F,,} is the set containing the indices of colluders who tell others that they received both

—~all ~ .
the base layer and enhancement layer 1;and SC = {i € SC : F) = F, U F,; U F,,}
is the set containing the indices of colluders who tell others that they received all three

~ 2 ~ . ~b ~~bel —~ all
layers. Define K®, K?¢!, and K as the number of colluders in SC, SC = ,and SC
respectively.

If colluder i; is the only cheating colluder and the processing parameter is C PV =
(Fy, Fy U Fuy U F,), then we have SC = SC?\ {i1}, SC"*' = SC*! and SC*" =
SC U {i}}. Consequently, K? = K? — 1, K>¢! = K¢ and K = K4 + 1.1fother
colluders do not discover i;’s precollusion processing, they assume that the extracted
fingerprints from all three layers will be used by the detector to determine whether 7; is
a colluder. Under this assumption, colluders analyze each attacker’s detection statistics
and follow Table 5.1 to choose the collusion parameters.

As an example, assume that colluders decide to generate a colluded copy includ-
ing all frames in the base layer and enhancement layer 1, and (E b Kbel K ally and
(Np, N.1, N,») satisfy the constraint

Kb YN, .
Kb Ny, + (K2 + K9/ Ny + Not ~ N + N

listed in Table 5.1. Under the assumption that fingerprints extracted from both layers
would be used by the detector to identify colluder i, other colluders estimate that i;’s
detection statistics have the mean

’a([l) _ ESN[; +&2Nel o
Kol JNy + Na

where N, and N, are the lengths of the fingerprints embedded in the base layer and
enhancement layer 1, respectively. They choose the collusion parameters such that i)

(11.11)

(11.12)
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equals the means of other colluders’ detection statistics. From Table 5.1, the selected
parameters are

B = Np + Nei Kp/Np
TN RN+ (K0 + KNy T Ny
- Eb,el . . . .
Po= g (1= A) B=1-h =B
Eb,el
&’] = ==, and&zzl—al. (1113)
Kb.el +Kall

Then, colluders generate the colluded copy using the two-stage collusion.

During the colluder identification process, because colluder i; received only the
fingerprinted base layer from the content owner, the detector uses only fingerprints
extracted from the base layer to decide whether i is a colluder. The extracted fingerprint
from frame j € F}, in the base layer is

Q. (i1)
:83 : Wj
Kall

Z Br - (’) L Z ,gz'W.(?) E3'W.(-i)
TR

ieSChi#i, ieSChel

Y, =

(11.14)
With orthogonal fingerprint modulation, given the colluder set SC, the index of the
cheating colluder i;, and the precollusion processing parameter C PV = (F,, F,, U
F,1 U F,),if n; follows Gaussian distribution N0, anz), using the same analysis as that
of Zhao and Lio [137], we can show that

i ' » ~; ho—
p (1§15, CP) ~ NG a2y ana P =0 (M),

On

o , Bs/N
where pf")—— ST wie = ”b . (11.15)
JEFy K

For an honest colluder i; who does not process his or her copy before collusion, follow-
ing the same analysis, we can show that this colluder’s detection statistics follow Gaussian

distribution p (T,‘v"2>|sc, i, CPW) ~ N, 62) where i = B +/Nyow/K", and

the probability of being detected is Py = Q ((h — i?)/a,).

Note that 2™ in (11.12) does not equal " in (11.15), and the colluders make an
error in estimating the mean of the cheating colluder i, ’s detection statistics. This is the
result of i;’s precollusion processing behavior; this estimation error helps the cheating
colluder further lower his or her risk of being detected.

From (11.10) and (11.15), for fixed 4 and o2, comparing the cheating colluder’s
probability of being detected in these two scenarios is equivalent to comparing 1) in
(11.10) with @@ in (11.15). For a fair comparison, if the constraints in Table 5.1 are
satisfied, we fix the frame rate of the colluded copy and let F¢ = F°.

To compare the values of the two means, we consider the following scalable finger-
printing systems. We observe that for typical video sequences such as “miss america,’
“carphone,” and “foreman,” each frame has approximately 3000 to 7000 embeddable
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coefficients, depending on the characteristics of the sequences. As an example, we
assume that the length of the embedded fingerprints in each frame is 5000, and we
test on a total of 40 frames. We choose F, = {1,5,9,...}, F,; ={3,7,11,...}, and
F,=1{2,4,8,...} as an example of the temporal scalability, and the lengths of the
fingerprints embedded in the base layer, enhancement layer 1, and enhancement layer 2
are N, = 50000, N,; = 50000, and N, = 100000, respectively. We assume that there
are a total of M = 450 users and |U?| = [UP¢!| = |U| = 150. We first generate a
unique vector following Gaussian distribution A/(0, 1/9) for each user, and then apply
Gram—Schmidt orthogonalization.

We assume that there are a total of K = 150 colluders, and (K?, K»¢!, K ) are on
the line CD in (5.31), which is the boundary of one of the constraints in Table 5.1 to
achieve fairness of collusion when generating a colluded copy of the highest resolution.
Other values of (K?, K?¢', K%y and (N}, N.1, N,,) give the same trend.

Assume that there is only one cheating colluder i; and CP) = (F,, F, U F,; U
F,). Figure 11.6 compares " in (11.10) with 7@ in (11.15) when K = 150 and
(KP, K"t K) takes different values on line CD in (5.31). In Figure 11.6, a given
value of K corresponds to a unique point on Line (5.31) and, therefore, a unique triplet
(K?, K", K"). In Figure 11.6(a), F° = F, U F,; U F,; and the colluded copy has
the highest resolution; and in Figure 11.6(b), F¢ = F} and the colluded copy contains
only frames in the base layer. From Figure 11.6, increasing the resolution of his or
her fingerprinted copy before multiuser collusion can help the cheating colluder further
reduce his or her probability of being detected when the colluded copy is of high quality,
but it cannot lower the cheating colluder’s risk when colluders decide to generate a copy
of the lowest frame rate. This is because when F¢ = Fj, no matter how many frames
the cheating colluder i; claims that he or she has received, only those in the base layer
are used to generate the colluded copy, and those frames are the ones that i} received
from the content owner. In this scenario, other colluders correctly estimate the mean of
i1’s detection statistics during collusion, and increasing the frame rate cannot help the
cheating colluder further reduce his or her risk. To generalize, increasing the temporal
resolution is effective in reducing a cheating colluder’s probability of being captured
only if F¢ > F,

Reducing resolution before multiuser collusion
In this type of precollusion processing, a cheating colluder receives a copy of higher
resolution and tells other colluders that he or she has only a copy of lower quality. Shown
in Figure 11.7 is an example, in which the cheating colluder i; subscribes to all three
layers while claiming that he or she has only the fingerprinted base layer. In this example,
i1 simply drops frames in the two enhancement layers during precollusion processing.
When reducing the frame rate of his or her fingerprinted copy, the cheating colluder
does not need to forge any frames and, therefore, he or she does not need to worry about
the quality constraints. In this scenario, the analysis of the cheating colluder’s risk of
being detected is similar to that in Section 11.2.1.1 and is thus omitted.
Figure 11.8 compares the means of the cheating colluder’s detection statistics when
he or she drops frames in the enhancement layers with that when he or she does
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Fig. 1.6 Comparison of " in (11.10) and 2" in (11.15) when (K?, K>¢!, K") takes
different values on line CD (5.31)

not apply precollusion processing. The setup of the scalable fingerprinting system in
Figure 11.8 is the same as that in Figure 11.6. Similarly, each K in Figure 11.8 represents
one point on line CD in (5.31) and a unique (K b gbel gal ) triplet. The precollu-
sion processing parameter is cpP® = (FpUF g UFy, Fp). FC=F,UF, UF, and
F¢ = Fp in Figure 11.8(a) and (b), respectively. From Figure 11.8, similar to the case in
Figure 11.6, when the colluded copy has high resolution, the cheating colluder can
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Fig. 11.7 Example of reducing the frame rate before multiuser collusion. F' () = F,UF, UF,,
and F@) = F,

significantly reduce his or her own probability of being detected by reducing the frame
rate before multiuser collusion, however, when the colluded copy has low resolution,
it cannot further lower the cheating colluder’s risk. In general, reducing the temporal
resolution before collusion can further reduce the cheating colluder’s risk only when
Fe o F,

Performance comparison of different strategies

In the scalable fingerprinting system, each cheating colluder has two choices when
modifying the resolution of his or her fingerprinted copy before collusion. For example,
for a cheating colluder i; € SC’ who receives all three layers from the content owner,
during precollusion processing, i; can drop the received enhancement layer 2 before
collusion and tell other attackers that he or she has a medium-quality fingerprinted copy.
The cheating colluder #; can also drop both enhancement layers and claim that he or she
has the base layer only. This section compares the effectiveness of different precollusion
processing strategies in reducing the cheating colluder’s risk, assuming that the quality
constraints are satisfied and other colluders do not discover the precollusion processing
behavior.

From the analysis in the previous section, neither increasing nor reducing the temporal
resolution can further reduce the cheating colluder’s probability of being detected when
the colluded copy contains only frames in the base layer. Therefore, in this section, we
consider scenarios in which the colluded copy includes at least one enhancement layer
and F¢ equals either Fp U F,j or Fj, U F,; U F;.

Our simulation setup is similar to that in Section 11.2.1.1. We assume that each frame
has 5000 embeddable coefficients and we test on a total of forty frames. We consider a
temporally scalable video coding system with F, = {1,5,9,...}, F,; ={3,7,11,...},
and F,, ={2,4,8,...}; the lengths of the fingerprints embedded in the base layer,
enhancement layer 1, and enhancement layer 2 are N, = 50000, N, = 50000, and
N = 100000, respectively. We further assume that there are a total of M = 450 users
in the system, and |U?| = [U?¢!| = |U%/| = 150. For each user, a unique vector is first
generated from Gaussian distribution N(0, 02) with o2 = 1/9, and Gram-Schmidt
orthogonalization is applied.
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Fig. 11.8 Comparison of the means of the cheating colluder’s detection statistics when he or she

reduces the frame rate during precollusion processing with that when he or she does not process
his or her copy before multiuser collusion

During collusion, we assume that there are a total of K = 150 colluders and
(Kb, kb€l K4y takes different values on line C D in (5.31). We further assume that the
additive noise n; in (11.4) follows Gaussian distribution N(0, o?) with 62 = 202. In
our simulations, we assume that there is only one cheating colluder 7; and other colluders
do not discover his or her precollusion processing.
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For cheating colluders in subgroup SC”

For a cheating colluder i; who receives the base layer only, he or she can increase the
frame rate of his or her fingerprinted copy with two different parameters: C Pl(il) =
(Fp, Fp U F,1)and CPz(il) = (Fp, Fp U F,; U F,). In this section, we compare the effec-
tiveness of these two strategies in reducing i;’s probability of being caught, Py‘).

We fix the probability of accusing a given innocent user Py, as 0.01, and compare
chi‘) of different precollusion processing parameters. Figure 11.9 shows our simulation
results when (K?, K?¢!, K4!') takes different values on line CD in (5.31), and each K
corresponds to a unique point on that line. F¢ = F U F,; and F¢ = F, U F,; U F,; in
Figure 11.9(a) and (b), respectively. From the cheating colluder’s point of view, when
F¢ = Fy U F,, the two processing parameters have the same performance. If F¢ =
FpyUF, UF,, CPz([‘) = (Fp, F, U F,; U F,;) gives the cheating colluder a smaller
probability of being detected than C Pl(i‘) = (F}p, Fj U F,). Therefore, under the quality
constraints, a cheating colluder in SC? should pretend to have received all three layers
from the content owner to minimize his or her risk.

In Figure 11.10, we consider two colluders, a cheating colluder i/; who increases
the resolution of his or her copy during precollusion processing and an honest col-
luder i, who does not process his or her copy before collusion, and compare their
probabilities of being detected by the fingerprint detector. i} € SC, and CP®) =
(Fp, Fp U F, U F,y). From Figure 11.10, precollusion processing makes the honest
colluder i, have a much larger probability of being detected than the cheating colluder
i1, and increases i, s relative risk when compared with that of 7. It is certainly a cheating
behavior.

For cheating colluders in subgroup SC”¢!

A cheating colluder i; € SC”¢' who receives the base layer and enhancement layer 1
from the content owner can increase the resolution of his or her copy with parameter
CPI(“) = (Fp U F,1, F U F,; U F,,) during precollusion processing. Colluder i; can
also drop his or her fingerprinted enhancement layer 1 with parameter CPz(i]) =(FpU
Fer, F, b)~

From the simulation results shown in Figure 11.11(a), when the colluded copy has
medium temporal resolution and F¢ = F, U F,;, dropping enhancement layer 1 with
parameter C Pz(i‘) reduces i;’s probability of being detected, but increasing the reso-
lution with parameter C Pl(i') cannot further lower the cheating colluder’s risk. From
Figure 11.11(b), when the colluded copy includes all three layers and F° = F, U F,; U
F.,, both CPl(il) and CPz(i‘) can reduce i1’s probability of being captured, and CPl(i‘)
gives the cheating colluder a smaller chance to be detected than C Pz(i‘).

Consequently, for a cheating colluder in subgroup SC”¢! to minimize his or her own
risk, when colluders plan to generate a colluded copy of medium temporal resolution,
the cheating colluder should drop enhancement layer 1 before multiuser collusion; and
when the colluders plan to generate a colluded copy containing all three layers, the
cheating colluder should increase the resolution of his or her fingerprinted copy with
parameter C P\"") = (F, U F, F, U Foy U Fyp).
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Fig. 11.9 Performance comparison of different precollusion processing strategies for cheating
colluders in SC*

Figure 11.12 investigates the impact of precollusion processing on other colluders’
probability of being detected. In Figure 11.12, there are ten cheating colluders who use
the same parameter (Fp U F,, Fp U F,; U F,,) during precollusion processing, and they
process their fingerprinted copies independently. We consider two colluders, a cheating
colluder i; and an honest colluder i, who does not apply precollusion processing. In
this scenario, precollusion processing not only reduces the cheating colluders’ absolute
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Fig. 11.10 Comparison of different colluders’ probabilities of being detected when there exist
cheating colluders

risk, but it also decreases other attackers’ probability of being detected. However, from
Figure 11.12(b), such precollusion processing makes the cheating colluder i; take a
much smaller chance of being caught than the honest colluder i, and increases other
colluders’ relative risk with respect to the cheating colluders. Therefore, it is still a
cheating behavior.
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Fig. 11.11 Performance comparison of different precollusion processing strategies for cheating
colluders in SC?¢!

For cheating colluders in SC%/

For a cheating colluder i; in subgroup SC%’ who receives all three layers, during
precollusion processing, i; can reduce the frame rate of his or her fingerprinted copy
with two different parameters: CPl(i‘) = (Fp U F,  UF,, Fp)and CPz(i‘) =(F,UF, U
Fe2anUFel)~
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Fig. 11.12 Impact of precollusion processing on other colluders’ probability of being detected

As shown in Figure 11.13(a), when the colluded copy has medium resolution, using
C Pl(i‘) further reduces i, ’s probability of being detected, whereas C Pz(il) does not change
the risk. From Figure 11.13(b), if colluders generate a high-resolution colluded copy,
both strategies lower the cheating colluder’s probability of being captured and P;‘) of
C Pl(i‘) is smaller than Py‘) of C Pz(i'). Consequently, from the cheating colluder’s point
of view, dropping both enhancement layers before multiuser collusion is preferred for a
cheating colluder in subgroup SC“" to minimize the risk of being detected.

For an honest colluder i, who does not process his or her received copy before collu-
sion, Figure 11.14 shows the impact of cheating colluders’ precollusion processing on
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Fig. 11.13 Performance comparison of different precollusion processing strategies for cheating
colluders in SC

i’s probability of being detected when the total number of cheating colluders varies. In
Figure 11.14, all cheating colluders select the same precollusion processing parameter
CP = (FyU F, U F,,, Fp), but each processes his or her fingerprinted copy indepen-
dently. From Figure 11.14, dropping enhancement layers before collusion increases
others’ probability of being detected, and the honest colluder has a greater probability
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Fig. 11.14 An honest colluder’s probability of being detected with different numbers of cheating
colluders

of being detected when there are more cheating colluders. In this example, precollusion
processing is not only cheating, but also malicious.

Simulation results on real video

We test the effectiveness of changing the resolution of the fingerprinted copy before col-
lusion on real videos, assuming that the quality constraints are satisfied. We choose
the first forty frames of the sequence “carphone” as an example. Similar to that
in Section 11.2.1.1, we consider a temporally scalable video coding system with
F,={1,5,9,...}, F.1 ={3,7,11,...} and F, = {2, 4, 8, ...}. The lengths of the fin-
gerprints embedded in the base layer, enhancement layer 1, and enhancement layer 2
are N, = 39988, N, = 39934, and N, = 79686, respectively. We assume that the total
number of users is M = 450 and |U?| = |U>¢!| = |U%| = 150. We adopt the human
visual model-based spread spectrum embedding of Podilchuk and Zeng [58], and embed
the fingerprints in the DCT domain. We first generate independent vectors following
Gaussian distribution (0, 1/9), and then apply Gram—Schmidt orthogonalization to let
the assigned fingerprints be strictly orthogonal and have equal energy. In each finger-
printed copy, similar to that in the work of Su ez al. [111], fingerprints in adjacent frames
are correlated with each other, depending on the similarity between the host frames.
During collusion, we assume that there are a total of K = 150 colluders and
(Kb, Kb, K9 takes different values on CD in line (5.31). We consider a simple
scenario in which there is only one cheating colluder who changes the resolution of his
or her received copy before collusion. Furthermore, we assume that no colluders discover
the cheating colluder’s precollusion processing. In our simulations, we adjust the power
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Fig. 11.15 Simulation results of increasing the resolution of the received copies during
precollusion processing on the first 40 frames of the sequence “carphone.” F¢ = F, U F,; U F,

of the additive noise n; such that ||n_,-||2/||JND_,- . W;”H2 = 2 for every frame in the
colluded copy.

Figures 11.15 and 11.16 show the simulation results. From Figures 11.15 and 11.16,
under the quality constraints, changing the resolution of the fingerprinted copy can help
a cheating colluder further reduce the risk of being caught, especially when the colluded
copy has high resolution. The simulation results on real videos agree with our theoretical
analysis in Section 11.2.1, and are comparable with the results in Section 11.2.2.
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Fig. 11.16 Simulation results of decreasing the resolution of the received copies during
precollusion processing on the first 40 frames of the sequence “carphone.” F¢ = F, U F,,

Chapter summary

Cheating is likely to happen in media-sharing social networks owing to the cheat-
ing nature of the users. Only after understanding cheating can users act against it.
Therefore, in this chapter, we analyze the cheating behavior in colluder social networks
and formulate the dynamics among attackers during collusion to minimize their own
risk of being detected and protect their own interest. We investigate a few precollusion
processing strategies that a cheating colluder can use to further reduce his or her chance
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of being captured by the digital rights enforcer, and analyze their effectiveness. We also
analyze the constraints on precollusion processing to maintain the perceptual quality of
the fingerprinted copies.

We first investigate the strategies for a cheating colluder to attenuate the energy of
the embedded fingerprints before collusion. The cheating colluder can apply temporal
filtering to his or her copy and average adjacent frames of similar content before multiuser
collusion. We analyze its effectiveness in reducing the cheating colluder’s risk as well
as the perceptual quality of the fingerprinted copy after temporal filtering. Both our
analytical and simulation results show that this temporal filtering reduces the cheating
colluder’s risk of being captured, at the cost of quality degradation. We then investigate
the tradeoff between the risk and the perceptual quality that a cheating colluder needs
to address, and derive the optimal filtering coefficients to minimize the probability of
being caught while maintaining good quality of the fingerprinted copy.

We then consider the problem of traitors within traitors when attackers receive fin-
gerprinted copies of different resolutions owing to network and device heterogeneity. In
such a scenario, a cheating colluder can not only apply temporal filtering to his or her
received frames, but can also change the resolution and quality of his or her fingerprinted
copy before multiuser collusion. We show that under the quality constraints, changing
the resolution of the fingerprinted copy can help a cheating colluder further reduce the
probability of being caught, especially when the colluded copy has high quality. For
traitors within traitors in scalable fingerprinting systems, we also investigate the selec-
tion of the optimal strategy for a cheating colluder to minimize his or her risk under the
quality constraints.



12

Attack resistance in peer-to-peer
video streaming

Chapter 9 studies cooperation stimulation for P2P video streaming over Internet and
wireless networks. One assumption there is that all users in the P2P networks are
rational, and their goal is to maximize their own payoffs. As discussed in Chapter 9
and shown in Figure 12.1, they may lie to others about their personal information if
they believe cheating can help increase their utilities. There might also exist malicious
users who aim to exhaust others’ resources and attack the system. For example, in P2P
systems, they can tamper the media files with the intention of making the content useless
(the so-called pollution attack). They can also launch the denial of service (DoS) attack
to exhaust other users’ resources and make the system unavailable [85]. What is more,
once an attacker is detected, he or she can leave the network temporarily, come back
later with a new ID, and continue causing damage to the system.

To further proliferate P2P systems and provide reliable service, misbehavior detection
and attack resistance are fundamental requirements to stimulate user cooperation even
under attacks. A challenging issue in malicious user detection in P2P video streaming is
to differentiate between “intentional” misbehavior (for example, intentional modification
of the video content) and “innocent” ones (such as transmission error and packet loss in
error-prone and congested networks).

In this chapter, we first model the P2P video streaming network over the Internet
as a multiplayer game, which includes both rational (selfish) and malicious users. We
then study different methods that the attackers may use and analyze the maximum dam-
ages that they can cause to the system. Based on such analysis, we explore possible
schemes to identify attackers and analyze the attack resistance of the proposed coop-
eration stimulation strategies. We then extend our study to P2P video streaming over
wireless networks. Wireless video streaming social networks often have fewer users,
owing to the limited transmission range of mobile devices, and attackers can damage
the system more easily. Here, trust management is used to quickly and reliably iden-
tify attackers in wireless P2P streaming and to stimulate user cooperation even under
attacks.

Because of network congestion and transmission errors, a chunk may be dropped
by the intermediate nodes or received incorrectly at the receiver’s side. Here, we
assume that a transmitted chunk is considered dropped if it does not arrive within
one round, and we use P;; to denote the probability that a chunk is successfully trans-
mitted from peer i to peer j in one round. We assume that the chunk request mes-
sages can be received immediately and perfectly, because they contain only a few bits
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and can be retransmitted within a short interval, if necessary, to ensure successful
transmission.

Attack-resistant cooperation strategies in P2P video streaming
over the Internet

In this section, we consider P2P video streaming over the Internet and investigate how
to identify malicious users and design attack-resistant cooperation strategies. Here, we
start with a simple scenario in which attackers do not hand-wash; we will address the
hand-wash attack in the next section.

Misbehavior in P2P video streaming

We first consider possible strategies that attackers can use to attack the P2P video
streaming system; we focus on insider attackers — that is, attackers who also have
legitimate identities. In P2P video streaming social networks, attackers can use different
strategies to to attack the system, for example:

(1) Incomplete chunk attack: The malicious attacker agrees to send the entire requested
chunk to a peer, but sends only portions of it or no data at all. This makes the
requesting peer waste his or her request quota in this round, and he or she must
request the same chunk again in the next round.

(2) Pollution attack: The other kind of attack in P2P live streaming is pollution. In P2P
streaming system, a malicious user modifies the data chunks, renders the content
unusable, and then makes this polluted content available for sharing with other peers.
Unable to distinguish polluted chunks from clean (unpolluted) ones, unsuspicious
users may download the polluted chunks into their own buffers, and share them with
others. In this way, polluted chunks spread through the entire network.

(3) Hand-wash attack: Many P2P systems are anonymous in nature, and a user is only
identified by the registered ID. If a malicious user is detected, he or she can leave
the system temporarily and come back with a new valid ID. P2P streaming systems
cannot differentiate between a new user and a returned attacker with a new ID, and
the hand-wash attack enables attackers to constantly cause damages to the system.
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Game model

For P2P live streaming over the Internet, we model the interactions among peers as the
following game:

Server: The streaming server has all the video chunks. Its upload bandwidth is W,
and the streaming server sends the requested chunks to users in a round-robin fashion.
Players and player type: There are a total of N users/peers in the P2P live streaming
social network. Each player i € N has a type 6; € {selfish, malicious}. Let N, denote
the set of all selfish players and &,, = N\N; is the set including all insider attackers.
A selfish user aims to maximize his or her own payoff, and may cheat other peers if
cheating can help increase his or her payoff. A malicious user wishes to exhaust other
peers’ resources and attack the system.

Chunk requesting: As in Section 9.1, in each round, each player has one chunk-request
quota, with which he or she either requests a chunk from a peer, requests a chunk from
the video streaming source, or does not request any chunks in this round.

Request answering: For each player, after receiving a request asking for the upload
of a chunk in its buffer, it can either accept or refuse the request.

Cost: For any player i € N, uploading a chunk to another player incurs a cost of ¢; =
M/ W;t,where W; is player i ’s upload bandwidth and W; > W,,;,, as in Section 9.1.2.
Gain: If a selfish user i € N, requests a data chunk from another peer j, and if an
unpolluted copy is successfully delivered, his or her gain is g; where P;;g; > c;. Here,
as in Section 9.1.2, a chunk is considered lost if it does not arrive within one round,
and P;; is the probability that a chunk is successfully transmitted from peer 7 to peer
j in one round. Also, as in Chapter 9, user i decides g; depending on how much he
or she wants to watch the video.

In this game, before defining each user’s utility function, we first introduce the symbols

that we use in this section. For each playeri € N,

Cr(j, t) is the total number of chunks that i has requested from j by time ¢.
Here, j can be either a peer (j € N) or j is the streaming server. Cr')(¢) =
> je(n. source) Cr®(j, t) denotes the total number of chunks that i has requested
by time ¢.

By time ¢, peer i has successfully received Cs®)(j, t) chunks from peer j in time (a
chunk is received in time if and only if it is received within the same round that it was
requested). Cs(1) = 37, (v source; Cs(J, 1) is peer i s total number of successfully
received chunks by time ¢.

By time ¢, Cg)( J, t) is the total number of polluted chunks that peer i received
from peer j. The total number of successively received unpolluted data chunks that
peer i received from peer j is Cs'(j, t) — Cg)(j, t), and each successfully received
unpolluted chunk gives peer j a gain of g;.

Cu(j, t) denotes the number of chunks that i has uploaded to player j by time .
Cud(t) = D e i Cu(j, t) is the total number of chunks that i has uploaded by
time #, and the cost of uploading each chunk is ¢; for peer i.
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Let ¢ be the lifetime of the P2P live streaming social network, and let T @)(t) denote
the total time that peer 7 is in the network by time ¢. For a selfish playeri € N;, the utility
U9(t7) is defined as

Cs(ty) = 3, ey COU, tf)] g — Cu (1) 7
Cr(i)(t/-)

Utr) = (12.1)
Here, the numerator denotes the net profit (i.e., the total gain minus the total cost) that
player i receives, and the denominator denotes the total number of chunks that i has
requested. This utility function represents the average net profit that i can obtain per
requested chunk, which i aims to maximize.

For a malicious player j € N,,, the objective is to maximize its utility

Ur(nj )

Sien, CulGo 1)t + Yien [CrOG ) = CsOG )] Prigi — CulP (e )
T(j)(tf) ’

(12.2)

The numerator in (12.2) is the net damage caused by j: the first term calculates the total
upload bandwidth that other users use to send the requested chunks to the malicious user
J; the second term calculates other selfish peers’ potential loss in gain as a result of the
incomplete chunk attack by peer j; and the last term is peer j’s cost to upload chunks to
other peers. We normalize the net damage by the lifetime of peer j; this utility function
represents the average net damage that j causes to other users per time unit.

Attack-resistant cooperation stimulation strategies

Based on the system description in Section 12.1, we can see that the multiple player
game is much more complicated than the two-person game in Section 9.1. First, a
peer may request chunks from different peers at different times to maximize the utility.
A direct consequence of such a nonrepeated model is that favors cannot be granted
simultaneously. This makes cooperation stimulation in P2P live streaming networks an
extremely challenging task. In addition, the inevitable packet delay in the Internet can
cause severe troubles. For the two-player cheat-proof cooperation strategy, if the link
between users is too busy and some packets cannot arrive within one round, the game
will be terminated immediately, causing drastic performance degradation. What is more,
it is challenging to distinguish “innocent” misbehavior owing to bit errors and packet
loss from “intentional” ones by malicious attackers. Thus, direct application of the two-
player cooperation strategies in Chapter 9 to the multiple-player scenarios may not work
without proper adjustment and accurate schemes to identify malicious attackers.

Credit mechanism
We introduce the credit mechanism to address the issue that favors cannot be simultane-
ously granted in the multiuser game, and to differentiate between intentional uploading
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of polluted chunks by attackers and unintentional forwarding of polluted chunks by
selfish users.
For any two peers i and J,

CC(i)(j, 1) = Cu(i)(j, 1) — C;j)(i’ 1) (12.3)

calculates the total number of clean chunks that peer i has uploaded to peer j by time .
We then define

DY, 1) =CcV(j,t)— CcVi, 1)
= (Cu(j.t) = CP(i, 1) — (CuV(i 1) = CP(G. ), (12.4)

which is the difference between the number of useful chunks that peer i has sent to peer
J and the number of useful chunks that peer j uploaded to peer i.

Similar to the two-player cooperation stimulation strategy in Section 9.1.4, we consider
the following strategy: each selfish peer i € N; limits the number of chunks that he or
she sends to any other peer j such that by any time #, the total number of useful (clean)
chunks that i has forwarded to j should be no more than Cc")(i, t)) + DY) (j, t); that
is,

DYj, 1) < DY)

max

(.0, Vt=0. (12.5)

Here, D{) (j, t)is the “credit line” that user i sets for user j at time ¢. The credit line is
set for two purposes: (1) to prevent egoism when favors cannot be granted simultaneously
and to stimulate cooperation between i and j, and (2) to address possible unintentional
forwarding of polluted chunks by a selfish user while limiting the possible damages that
J can cause to i. By letting DY) (j,¢) > 0, i agrees to send some extra, but at most
DY) (j, 1), chunks to j without getting instant payback. Meanwhile, unlike acting fully
cooperatively, the extra number of chunks that i forwards to j is bounded to limit the
possible damages when j plays noncooperatively or maliciously.

Player i’s goal of setting the credit line is to avoid helping player j much more than
player j helps i in the long-term view, and vice versa, as neither i nor j has incentive to
send more chunks than the other does. Meanwhile, owing to the dynamically changing
network conditions, the request rates between i and j may vary from time to time. In
this case, the credit line must be large enough, because a small credit line will refuse
some requests even when the long-term average request rates between i and j are equal.
The ultimate goal of setting the credit line is to make sure that players i and j send
asymptotically equal numbers of unpolluted chunks to each other, and

lim Cc(j, 1) = lim CcY(j, 1). (12.6)
t—00 t—00

Combining the definition of DY) (j, ) with (12.6), DY) (j, t) must satisfy

max max

DY) (.t
m Dnaxl: D _ o (12.7)

t—o0 (C r(l)(t)
which also implies that arbitrarily increasing credit lines cannot always increase the
number of accepted requests. Equation (12.7) provides an asymptotic upper bound for
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DY (j,t). Based on this analysis, D) (j,t) should be large enough in the first few
cooperating rounds to stimulate cooperation between user i and j. On the other hand,
the ratio D) (j, ) over the number of remaining rounds after time ¢ should be close

max

to 0 to prevent a decrease of user i’s utility. Therefore, when choosing D) (j, t), user
i should first estimate the number of remaining rounds for the live streaming program,
and choose a relatively small number Djyp,. Then user i should compare D, with the
reciprocal of P;, so that D{) _(j, ) should be larger than 1/P;; to stimulate cooperation
with j. A simple solution to this is to set the credit line to a reasonably large positive

constant, which will be shown in Section 12.1.6.

Incomplete chunk attack detection

In this section, we focus on the detection of an incomplete chunk attack and design a
malicious user detection algorithm that can differentiate between an intentional incom-
plete chunk attack and packet loss or delay as a result of network congestions.

Recall that P;; is the probability of successful transmitting one chunk from user i to
user j within round period t. Hence, when player i decides to send a chunk to player
J» with probability 1 — P;;, this chunk transmission cannot be completed within one
round because of packet dropping or delay because of high traffic volume. We use a
Bernoulli random process to model the unsuccessful transmission of a chunk owing to
congested networks. Recall that Cu'/)(i, t) denotes the number of chunks that j has
agreed to send to user i by time ¢, and Cs®)(J, ¢) is the number of chunks that peer i
has successfully received from j. Given the Bernoulli random process model, if user
j does not intentionally deploy the incomplete chunk attack, from the central limit
theorem [138], for any positive real number x, we can have

Cul(i,t)—o00

CsD(j, t) — Cu (i, t)P;;
lim Prob< sTU D — CuG, Db <—x>=Q(x), (12.8)

where O(x) = ﬁ [ e~""/2dt is the Gaussian tail function. If user j does not inten-

tionally sends incomplete chunks, (12.8) indicates that when the P2P live streaming game
CsVGN-PLC G0

N )

by a Gaussian random variable with zero mean and unit variance; that is,

keeps going and Cu'/)(i, t) is large enough, then can be approximated

Cs(j, 1) — P;CYNi, 1)

N M (12.9)

Therefore, based on (12.9), given a predetermined threshold # > 0, every selfish peer i
can identify peer j as a malicious user, as follows:

CsOGj, 1) — Cul i, )Py _
VCuD(, )Pji(1 — Pyy) —
and j € N(t) otherwise. (12.10)

j e ND@) if —h,

In (12.10), N{(¢) is the set of peers who are marked as malicious by peer i at time ¢,
and N¥(¢) is the set of peers who are marked as selfish by peer i at time . Based on
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(12.10), if a malicious user is always sending incomplete chunks to other users, then
the probability of correctly identifying the malicious user is P; = 1 — Q(h), and the
probability of falsely accusing a nonmalicious user as malicious is Py, = Q(h).

Multiuser cooperation stimulation strategies

Combining the credit line mechanism in (12.7) and the malicious attacker detection
algorithm in (12.10), we propose an attack-resistant cooperation stimulation strategy for
P2P video streaming in this section.

Recall that P;; is the probability that peer j successfully receives a chunk from peer i
in one round. Let P;; denote the probability that i successfully receives a chunk from the
streaming server in one round, and P is the percentage of requests that the streaming
server can answer in one round. These probabilities, P;;, Py;, and Py, can be probed or
estimated using the methods proposed by Liu ef al. [94].

We first consider the scenario in which there is a selfish peer i where

Pi-P.>Py YjeN, j#i (12.11)

his or her optimal strategy is to always download the video from the streaming server
and to reject all chunk requests from other peers. This is because in each round, peer i
has a one-chunk request quota and can request a chunk from either the streaming server
or one peer, j. If i sends a request to the streaming server, the probability that peer i
successfully receives the requested chunk is Py; - Ps. If i requests a chunk from peer
Jj» the probability that i successfully receives the requested chunk is P;; - Pjs, where
Pjs < 11is the probability that j agrees to send the chunk. Because P; - Py > Pj;, it is
obvious that sending the request to the streaming server gives i a higher probability of
receiving the requested chunk. It is the optimal chunk request strategy for each round
and, therefore, the optimal strategy for the whole game. Furthermore, because peer i
always requests chunks from the server, he or she does not have the incentive to send
any chunks to other peers in the network, which decreases peer i’s utility, as shown in
(12.1). Based on this analysis, peer i will always operate noncooperatively.

The preceding analysis suggests that if a peer has a very good connection with the orig-
inal streaming server, which is much better than the connections with all other peers, then
he or she will always refuse to cooperate, and cooperation cannot be enforced on these
peers. In reality, however, there are usually very few peers that can meet this condition,
as P2P live streaming social networks are usually very big. Thus, the streaming server
is often very busy with a small P, and makes the condition Py; - Py > Pj; forall j € N
with j # i very difficult to satisfy.

The other extreme scenario occurs when peer i is has the worst connection with other
peers; that is, for every j € N and j # i, there always exists another peer k£ € N and
k # 1, j such that P;; < P;. In this scenario, will all other peers in the network refuse
to cooperate with i? The answer is no, because of the dynamics in P2P social networks
and the assumption of a busy server. In P2P live streaming, different users have different
playback times. If peer i’s playback time is earlier than that of all other peers in the
network, then it is very likely that his or her buffer has chunks that no other peers
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have, which is the incentive for other peers to cooperate with i under the constraint that
DY, t) < DY) (i).

To summarize, we can arrive at the following multiuser cooperation stimulation
strategy for P2P live streaming social networks:

In the peer-to-peer live streaming game, for any selfish peeri € N; who does not meet
the condition in (12.11), he or she initially marks all other users as selfish. Then, in each
round, i uses the following strategy:

* Ifi receives a chunk request from j, i will accept this request if j has not been marked
as malicious by i and if (12.5) holds. Otherwise, i will reject the request.

* When i requests a chunk, he or she will send the request to peer j, who has the chunk
and satisfies

j=arg max Pj. (12.12)
JENSW.j#

* Let 1 — Q(h) be the maximum allowable false positive probability from i’s point of
view. When Cu'/)(i, t) is large enough for any user j € N, i will apply the detection
rule in (12.10) to detect malicious behavior from j after each chunk request initiated
byi.

Strategy analysis without malicious attackers

This section analyzes the optimality of the preceding cooperation strategy for peers who
do not satisfy the necessary conditions in (12.11) when there are no malicious users.
We first consider an infinite-lifetime situation with Cr)(f) — oo as t — oo; the finite-
lifetime situation will be discussed later. First, we assume DY) (j, t) satisfies (12.7),

and i and j send approximately the same number of chunks to each other.

Lemma 12.1. In the P2P live streaming game in which some chunks may be dropped or
delayed owing to high traffic volume in the Internet, for a selfish user j, if all other users
follow the multiuser attack-resistant cooperation strategy, then playing noncooperatively
and sending only part of the requested chunks will not increase j’s payoff.

Proof. If user j has agreed to upload a chunk to another user i € N, transmitting only
part of the requested chunk can help j reduce his or her cost. However, even though j
agrees to upload the chunk, it does not count as a useful chunk unless it is successfully
received. In addition, following the multiuser attack-resistant cooperation strategy, player
i always ensures that

lim Cs(j, 1) > lim CsY(j, 1). (12.13)
—00 —00

Thus, by sending only part of the requested chunk, player j loses the chance to request
a chunk from player i. To get this one-chunk-request chance back, player j has to send
another complete chunk successfully to player i. Therefore, intentionally sending partial
information of the requested chunks cannot bring any gain to player ;.
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Lemma 12.2. Foraselfishpeeri € N; inthe P2P live streaming game without malicious
attackers, once i has received a chunk request from another node j € N, if (12.5) holds
and if j follows the multiuser attack-resistant cooperation strategy, then accepting the
request is always an optimal decision from player i’s point of view.

Proof. From player i’s point of view, if (12.7) is satisfied, agreeing to send the requested
chunk will not introduce any performance loss, as the average cost to help j goes to zero
when ¢ — oco. Meanwhile, refusing the request may cause DY)(i, ) > DY) (i, t) and

thus forbids user i to request chunks from player j in the future. Therefore, accepting
the request is an optimal decision.

Lemma 12.3. In the peer-to-peer live streaming game without malicious attackers, a
selfish peer i € N has no incentive to cheat on his or her buffer map information.

Proof. From player i’s point of view, cheating on his or her buffer information will
prevent other peers from requesting chunks from him or her, and thus will decrease the
total number of chunks he or she uploads, that is, Cu")(t). However, because other users
always enforce (12.7) and Cu)(i, t) + DY) (i, t) < Cu'’(j, t), a smaller Cu(t) will
also decrease the chance of getting chunks from other peers and lower player i s overall
payoff, which is similar to the two-player game in Section 9.1.2. Therefore, selfish peers

have no incentive to cheat on buffer information.

Theorem 12.1. In the P2P live streaming game without malicious attackers, for all
selfish players who do not satisfy the condition in (12.11), the multiuser attack-resistant
cooperation strategy forms a subgame perfect Nash equilibrium, and it is also strongly

. . . i) ..
Pareto optimal if 0 < lim,_, oo % <ooforanyi, j € N.

(1) Nash equilibrium: To show that this strategy profile forms a subgame perfect
equilibrium, note that this multiuser game can be decomposed into many two-
player subgames. Therefore, we need to consider only the two-player subgame
between player i and j. Suppose that player i does not follow the above strategy;
that is, either i refuses to send chunks to player j when (12.5) is satisfied, or i
intentionally sends only part of the requested chunk to player j, or i agrees to send
the requested chunks even when (12.5) is not satisfied. First, from Lemmas 12.1
and 12.2, when (12.5) is satisfied, neither refusing to send the requested chunks
nor intentionally sending incomplete chunks will give player i any performance
gain. Second, when comparing DY(j, t) > D% (j, t)with DD(j, 1) < DY) (j, 1),
as long as DY)(j, t) > 0, following the multiuser cooperation stimulation strategy
in the previous section, j will always cooperate and send all chunks that i requests.
Thus, making D(, t) go above the credit line cannot help i receive more chunks
from j, but rather costs i more upload bandwidth and lowers i’s utility. Based on
this analysis, we can conclude that this multiuser—attack-resistant and cheat-proof
cooperation strategy forms a Nash equilibrium.

(2) Subgame perfectness: In every subgame of the equilibrium path, the strategies
are: If player j is marked malicious by peer i, player j will play noncooperatively
forever, which is a Nash equilibrium. Otherwise, player j follows the multiuser
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attack-resistant and cheat-proof strategy, which is also a Nash equilibrium. There-
fore, the cooperation stimulation strategy is subgame perfect.

(3) Strong Pareto optimality: From the selfish user’s utility definition in (12.1), to
increase his or her own payoff, a player i can either increase Cs)(¢) or decrease
Cu'Y(t). However, from the preceding analysis, further decreasing Cu((t) will
reduce useful chunks successfully received by other peers and lower their payoffs.
Thus, to increase his or her payoff, player i should increase lim,_, o, Cs(¢)/ Cri(t),
which means that some other players will have to send more chunks to player
i. As {Cr¥(t)} are of the same order because 0 < lim,_, o, %

ing lim,_, o, Cs()/ Cr®(¢) (and thus improving player i’s payoff) will definitely

decrease other players’ payoff. Therefore, the preceding strategy profile is strongly

Pareto optimal.

< 00, Increas-

Until now, we have focused mainly on the situation in which the game will be played
for an infinite duration. In general, a peer will stay in the network for only a finite period
of time — for example, until the end of the video streaming. Then, if DY) (j, 1) is too
large, each player i may have helped other users much more than his or her peers have
helped i. Meanwhile, if DY) (j, 1) is too small, player i may not have enough peers

max

to help him or her. How to select a good DY) (j, t) is a challenging issue. In Section

max

12.1.6 we study the tradeoff between the value of DU) (j,t) and the peers’ utilities
using simulations. It is shown there that in a given simulation scenario, a relatively
small D{) (j, t) achieves near-optimal performance when compared with the scenario

in which DY) (j, t)is set to infinity. The optimality of the cooperation strategies cannot
be guaranteed in finite-duration scenarios. However, we will show in the simulation
results that the performance of our attack-resistant cooperation stimulation strategy is

very close to optimal.

Strategy analysis with malicious attackers

In this section, we focus on the following two widely used attack models, the pollution
attack and the incomplete chunk attack, and analyze the performance of the cooperation
stimulation strategy when there are malicious users. To simplify our analysis, we assume
that W; = W, g; =g,andg% <ooforalli € N.

Pollution attack: We first study the performance of the cooperation strategy under the
pollution attack. By always accepting selfish users’ requests and sending polluted chunks
to them, malicious attackers waste selfish users’ quotas and prevent them from receiving
useful chunks in that round. Following the attack-resistant cooperation strategy, every
selfish user i € N, forces DW(j,t) < D) (j, ), and the damage caused to selfish user

i by one malicious attacker j is upper-bounded by D% (j,t)g. With a finite g and

max

W .
lim,_, o0 220U = ( from (12.7), we have

Cro)
DY (j.hg

S Crir) (12.14)

and, therefore, the overall damage caused by pollution attacks becomes negligible.
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Incomplete chunk attack: By sending incomplete chunks to others, malicious users
inject useless traffic into the network and waste other peers’ chunk-request quotas. With
the attacker detection algorithm in (12.10), for a malicious attacker, always sending
incomplete chunks may not be a good strategy, because this attacker can be detected
easily. Instead, to avoid being detected, attackers should send incomplete and com-
plete chunks alternately. According to the multiuser attack-resistant cooperation strat-
egy in Section 12.1, peer j identifies i as malicious if Cs)(i, t) — CuD(j, t)P;; <
—h \/Cu(f)(i, t)P;;(1 — P;;). Assume that by time ¢, user i has agreed to upload a
total of n chunks to user j. Therefore, to avoid being identified as malicious by j, i
must successfully forward at least nP;; — hy/nP;;(1 — P;;) complete chunks, and the
maximum number of incomplete chunks that i can send to j is upper-bounded by
n(l — P;) 4+ h\/nP;;(1 — P;;). Among these n(1 — P;)+ h\/nP;(1 — P;;) chunks,
n(l — P;;) of them are dropped or delayed by the network owing to the high Internet
traffic volume, and the actual number of intentional incomplete chunks sent to j by i
is upper-bounded by 4 /n P;;(1 — P;;). Therefore, for user j, the extra damage caused
by attacker i’s intentional ma11c10us attack is upper-bounded by 4/nP;(1 — P;j)g.
Furthermore, to avoid being identified as malicious, attacker i must successfully
forward at least nP;; — hy/nP;;j(1 — P;;) complete chunks to user j, which costs
attacker i a utility of [nP;; — h\/nP;(1 — P;;)| . Thus, following (12.2), the util-
ity that attacker i receives from intentionally sending incomplete chunks is at most
nP;(1— P,-j)(% +g)—n(l — P,-j)%. Because for any real positive #,

h\/Pll ;
n By (L= Py)ys +8) —0, (12.15)

teoo (]

)W‘L'

selectively sending incomplete chunks can bring no gain to the attackers if they want
to remain being undetected. In other words, if the game will be played for an infinite
duration, the incomplete chunk attack cannot cause damages to selfish nodes.

In summary, when the multiuser attack-resistant strategy is used by all selfish users,
the pollution attack can cause only limited damage to the system. Further, the relative
damage caused by the incomplete chunk attack asymptotically approaches zero when
the game is played for an infinite duration of time. Therefore, except for some false
alarms of identifying selfish users as malicious, selfish players’ overall payoff will not
be affected under attacks. From this analysis, we can also see that no matter what
objectives the attackers have and what attacking strategies that they use, as long as
selfish peers apply the multiuser attack-resistant cooperation strategy, the selfish users’
payoff and the overall system performance can be guaranteed.

Optimal attacking strategy: Based on the preceding analysis on the pollution attack
and the incomplete chunk attack, we can conclude that, for the infinite-duration game,
an attacker j’s overall payoff is upper-bounded by

DO t
W<mZmW) (12.16)

t—>00
ieNs
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provided that all selfish users follow the multiuser attack-resistant cooperation strategy.
This upper bound can be achieved by the following optimal attacking strategy in an
infinite-game model: in the P2P live streaming game, upon receiving a request, an
attacker j € N,, should always reject the requests; the attackers should always send
requests to selfish users to waste the selfish users’ chunk-request quotas, until the selfish
users refuse to forward any chunks to the attackers.

When the game will be played for only a finite period of time, the preceding attacking
strategy is no longer optimal. In addition to the pollution attack, the attackers can
also send incomplete chunks without being detected. The malicious-attacker detection
algorithm in Section 12.1.3.2 requires that the game has been played for a long time
and peer i and j have interacted for a large number of times to provide an accurate
estimation. The algorithm will not be initiated unless Cu/)(i, t) is large enough to avoid
a high false alarm rate. Thus, if the game is played for only a short period of time,
users do not have sufficient time to correctly estimate each user’s type, and attackers
can send incomplete chunks without being detected, which lowers selfish users’ utilities
and degrades the system performance. In this chapter we focus on the scenario in which
the game is played for a reasonably long time and users have enough time to interact
with each other and correctly estimate the statistics of chunk transmission. In such a
scenario, the malicious attacker detection algorithm in Section 12.1.3.2 can still be used
to accurately identify attackers and the relative damage caused by incomplete chunk
attack is still insignificant.

Simulation results

In our simulations, we choose the “foreman” CIF video sequence with thirty frames
per second, and duplicate it to generate a sixty-minute video. The video is initially
stored at an original server with upload bandwidth 3 Mbps. There are 200 DSL peers
with 768 kbps uplink bandwidth and 300 cable peers with 300 kbps uplink bandwidth.
Each user has a buffer that can store 30 seconds of video. To examine the impact of
the system parameters on the performance of the cooperation strategies, we run the
simulations under two settings. First, we let the round duration t be 0.4 second, resulting
in a total of 9000 rounds; and the video is encoded into a three-layer bit stream with
50 kbps per layer. The compressed bit stream is divided into one-second layer chunks,
and each chunk has 50 kilobits. In our second simulation setup, we let T = 0.2 second,
and the total number of rounds is 1.8 x 10*. The video is encoded into a four-layer
bit stream with 37.5 kbps per layer. Each chunk is of one-second length and includes
37.5 kilobits. We use the chunk-request algorithm in Section 9.4.1 and let the score
weights be w; = 1/2, w, = 1/6, and w3 = 1/3. The malicious peers follow the attack
strategy in Section 12.1.5 to send incomplete or polluted chunks. The selfish (rational)
peers follow the attack-resistant cooperation strategies in Section 12.1.3.2.

We first study how different credit lines affect cooperation stimulation. Figure 12.2
shows the relationship between the credit line and utility when the percentage of attackers
is 0, 25, 37, and 50 percent, respectively. The attackers are chosen randomly from the
500 peers. From these results, we can see that, in both simulation setups, when the credit
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Fig. 12.2 Selfish peers’ performance with and without attack

line is increased over 50, selfish users’ payoffs are saturated. As the credit line continues
increasing, selfish users’ utilities start to decrease very quickly. It is clear from (12.16)
that the maximum damage that attackers can cause is linearly proportional to the credit
line. For example, in Figure 12.2(a), when the credit line is larger than 120 and when
50 percent of the users are attackers, the damages caused by attackers are no longer
negligible. Also, Figure 12.2 suggests that setting the credit line to be 50 is an optimal
choice for both simulation settings, as it stimulates user cooperation to the maximum
degree. Nevertheless, arbitrarily increasing the credit line is dangerous for selfish users,
because they do not know how many malicious users are in the network.

Next, we examine the robustness of our cooperation strategies against attackers and
free riders in terms of PSNR. Because from Figure 12.2, both simulation settings give
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similar trends, here we use simulation setting 1 as an example to demonstrate the
robustness. Also, to show how the total number of users affects the optimal credit line,
we test our cooperation schemes on 500 users and 1000 users, respectively, and keep the
ratio between cable and DSL peers fixed as 3:2. We let the credit lines be equal to 50,
100, 200, and 300, respectively. The malicious peers are selected randomly and follow
the optimal attack strategy in Section 12.1.5. Figure 12.3(a) and (b) show the PSNR of
a selfish user’s video versus the percentage of attackers with different credit lines and
different number of users. It is clear that when the credit line is chosen correctly to
be around 50, our cooperation strategies can effectively resist attacks. Even when the
credit line is increased to 100 and when 60 percent of the users are attackers, the PSNR
of selfish users’ video does not degrade too much. From this discussion, in general, a
credit line between 50 an 100 will simulate cooperation among selfish users even under
attacks, will resist cheating behavior, and will give good performance.

Figure 12.3(c) shows the the robustness of the cooperation strategies against the pres-
ence of free riders who upload no chunks to others. In Figure 12.3(c), there are a total
of 500 users, including free riders, and rational users use the proposed attack-resistant
cooperation stimulation strategy. We use a credit line of 50. It is clear from Figure 12.3(c)
that the videos received by free riders have poor quality, and our cooperation stimula-
tion strategy makes free riding nonprofitable and thus unattractive. In addition, using
the proposed cooperation stimulation strategies, rational users are not affected by the
existence of free riders in the network, and the PNSR of their received videos remains
constant.

Attack-resistant cooperation strategies in wireless P2P video streaming

Game model

Following the study of cheat-proof cooperation strategies for P2P video streaming over
wireless networks in Chapter 9, we investigate its resistance against attacks and design
attack-resistant cooperation strategies here. We use the following game to model the
interactions among peers:

* Server: The video is originally stored at the streaming server with upload bandwidth
Ws, and the server will send chunks in a round-robin fashion to its peers. All players
are connected via the same access point to the Internet. This backbone connection has
download bandwidth ;.

* Players and player type: There is a finite number of users in the P2P wireless
video streaming social network, denoted by N. Each player i € N has a type
0; € {selfish, malicious}. As in the game in P2P video streaming over the Internet,
attackers can apply the pollution and the incomplete chunk attacks, and they may also
hand-wash from time to time.

* Chunk request: In each round, with limited bandwidth B in the channel dedicated
for user cooperation, users first bargain for their chunk-request quotas based on the
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time-sensitive bargaining solution in Section 9.3.1. As an extension of the two-person
time-sensitive bargaining in Section 9.3.1, the N-user bargaining procedure, is as fol-

(1) (1) (1) *) -

lows: User 1 offers an action N-tuple (al JAy s, Ay ) first, where a; is the num-

ber of chunks that user i can transmit in user k’s offer. Then user 2 decides whether to
accept this offer or to reject and offer back another action N-tuple (agz), agz) e, ag) .
If user 2 agrees to the offer, user 3 can decide whether to accept or reject and offer
back, and the rest of the users make their choices sequentially. This process continues
until all players agree on the offer. If users reach agreement at the jth action pair,

then g; is decreased to 8’ g; for user i. Therefore, the stationary equilibrium N-tuple

{ (xil), .. ,xg\})) , (xiz), e, x%)) ey (ng), o ,x%v))} will satisfy
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= —_XN ZX(N 1) N
i#N
(z)K _ .
and Zx =1, Vie{l,2,..., N}, (12.17)

and all users should accept the first offer.

Given the chunk-request quota, a user can send multiple chunk requests to another
user, send the requests to multiple peers, or not request any chunks in this round. The
user-cooperation channel is different from the channel between users and the access
point. Thus, users can also ask the server for chunks at the same time.

* Request answering: After receiving a request, each player, can either accept or reject

the requests.
Cost: For any player i € N, uploading a chunk to player ;j incurs cost

P A . )

cMP;/ [B log (1 + d,.glﬁ)}» where ¢; is the user-defined cost per unit energy, P;
1J%n

is the transmission power that player i uses for cooperation, and P; > P,,;,.
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* Gain: If a selfish user i € N, requests a data chunk from another peer j, and if
a clean copy is successfully delivered to him or her, his or her gain is g; where

P AL
g > man CiMPi/ |:BlOg (1 + d:jgé):l'

For this game model, the next step is to define each user’s utility function. For each
player i € N, we first define the following symbols:

o Cr(j,t) is the total number of chunks that i has requested from ; by time
t. Here, j can be either a peer (j € N) or the streaming server. Cri)(t) =
> e, source) Cr(j, 1) denotes the total number of chunks that i has requested
by time .

* By time ¢, peer i has successfully received Cs®)(j, t) chunks from peer j in time (a
chunk is received in time if and only if it is received within the same round that it was
requested). Cs)(1) = 37, v sourcey Cs(j, 2) is peer i’s total number of successfully
received chunks by time ¢.

* By time #, CY/)(j, 1) is the total number of polluted chunks that peer i received
from peer j. The total number of successively received unpolluted data chunks that
peer i received from peer j is Cs')(j, 1) — CP(j, 1), and each successfully received
unpolluted chunk gives peer j a gain of g;.

* Cu)(j, t) denotes the number of chunks that i has uploaded to player j by time ¢.
Cu(t) = 37 ey Cu(2) is the total number of chunks that user i has uploaded
to other users by time .

Let 7 be the lifetime of the P2P video streaming network, and let 7¢ )(t) denote the
total time that peer i has stayed in the network by time ¢. Then, the utility function for a
selfish playeri € N; is

CsO(tr) =3 ;en CYU tf)} & = 2 jen Cu(j, 1) —M0
Blog( )

Uty) =

Crid(ty)
(12.18)

Here, the numerator denotes the net reward (that is, the total gain minus the total cost)
that selfish user i obtains, and the denominator denotes the total number of chunks that i
has requested. This utility function represents the average net profit that ; can obtain per
requested chunk, which i aims to maximize. The utility function for a malicious attacker
J € Ny is

ciMP, [CrOG, 1) = CsD. tp)] &

Uy =" cu, 1p) i ‘
ieN, TU)(t;)B log (1 + ZI;ZI-%) = TO(t)

- ZCu(j)(i, t)— PALN
v TOe)Blog (1+ 7% )

CJ'MPJ'

(12.19)
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As in (12.2), this utility function represents the average net damage that j causes to
other users per time unit.

Attack-resistant cooperation stimulation strategies

Hand-wash attack and trust model

To accurately identify an attacker, the statistical malicious user detection algorithm in
Section 12.1.3.2 requires that a selfish user interacts with others for a large number of
rounds. Thus, in an environment in which attackers can apply the hand-wash attack,
the proposed method in Section 12.1.3.2 will fail: an attacker can attack aggressively
before selfish users collect sufficient statistics to detect him or her, leave the system
once he or she is detected, and then come back with a new ID to continue attacking the
system. Thus, selfish users may suffer badly from the hand-wash attacks, and the risk of
interacting with unknown users may prevent them from cooperating with one another.
To combat the hand-wash attack and to stimulate user cooperation under attacks, selfish
users must identify malicious users as soon as possible.

A straightforward solution is to reduce the credit line DY) (j,¢) defined in (12.5)
or the threshold % in (12.10). However, an arbitrary decrease of the credit line or the
detection threshold prevents users from cooperating with one another and results in the
failure of the whole network. For instance, if a selfish user j unintentionally forwards
a polluted chunk to another selfish user i, decreasing D) (j, #) may prevent these two
users from cooperating with each other.

To address the hand-wash attack and to speed up the malicious attacker detection
process, we introduce the concept of frust among selfish users in our framework and
let selfish users share their past experience with one another. When determining other
users’ types, collection of network opinions can help a selfish user detect malicious
attackers faster and lower the damage caused by the hand-wash attack. In the following,
we discuss our trust model and study how it can help resist the hand-wash attack.

A selfish user i establishes direct trust with another user j upon observations on
previous interactions with j. We use the beta-function—based method, in which user i
trusts user j at time ¢ with value

CsV(j, 1) = CPG, 1)+ 1
Crid(j,t)+2

Tr(j, t) = (12.20)
If user j is not malicious and does not receive or upload many polluted chunks, from
(12.20), Tr'(j, 1) should be close to P;. If user j applies the pollution attack, C{)(j, 1)
will increase; and if user j applies the incomplete-chunk attack, Cs‘)(, ¢) will decrease.
Thus, both types of attacks decrease the numerator in (12.20), resulting in a low trust
value for malicious users. The trust is directional, which means that the fact that user i
trusts user j does not imply that user j trusts user i.

Because trusted selfish users would like to identify malicious users together, the
damage caused by attackers to the trusted users are considered collectively. For example,
if user i trusts another user j at round ¢, user i considers the damage that malicious user
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k has caused to user j as his or her own damage. This scenario is equivalent to reducing
the credit line DY) (k, ¢)in (12.5)to DY) (k, t) — Tr(j, t) x DY) (k,1).

There is an effective bad-mouthing attack against the trust system, in which malicious
users provide dishonest recommendations to frame good parties and/or boost trust values
of malicious users [86]. To resist such a bad-mouthing attack, selfish users should trust
only users who have sent them a sufficiently large number of clean chunks. That is, at
time ¢, a selfish user i will trust user j only if user j has sent i more than C4")(¢) useful
chunks and Cs?(j, t) > Ch')(t). With the threshold CA)(¢), even if a malicious user
tries to apply the bad-mouthing attack, he or she must upload a large number of clean
chunks before he or she can be trusted. This “cooperative” behavior does not damage,
but rather improves, the system performance. In addition, for P2P video streaming over
wireless networks, owing to the broadcast nature of wireless communications, everyone
can listen to all the chunk requests and chunk answering in the network. Therefore,
a malicious user cannot arbitrarily frame a selfish user or boost another attacker with
whom he or she has not interacted before.

In summary, in each round, the credit line DY) (. t) in (12.5) is updated as

max

DYt + 1) =max ¢ 1, DY, (. )= > TrP%k ) x DO, 1)

keN® @)
where  N{)(1) = {klk € NO(t) and CsPk, 1) > ChO(1)}. (12.21)

Here, N (Tir)(t) is the set including the indices of all users whom i identifies as “selfish”
and each of whom has successfully uploaded at least Ch”)(¢) clean chunks to i by time
t. As will be demonstrated in Section 12.2.6, employing the trust model in (12.20) and
replacing the modified credit line as in (12.2 1) will help improve the system’s robustness
against the hand-wash attack and significantly improve selfish users’ utilities.

For a selfish user i, define

Cs'D(j, 1) = Z Ccs®, 1),
keNS(t)
and Cu'V(j, )= > Cu(j.n. (12.22)
keNY (@)

In each round, if Cu')(j, t) is large enough, the malicious user detection algorithm is
as follows:

Cs'D(j, 1) — Cu' Vi, t)pi -

j € NO@) iff : —h,
VCu D, )p;i(1— pji)
) Cs'® it)—C () i, )i
and j e NOQ i YD = UG Opi
VCu D, )p;i(1 — pji)
1 _
where pj;i = —-— P, (12.23)
ING) 2

keN® (1)
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in which P j; is the averaged possibility of successful transmission between user j and
user k.

Multiuser attack-resistant cooperation strategy

In summary, the multiuser cheat-proof and attack-resistant cooperation stimulation
strategy for P2P video streaming over wireless networks is as follows:

In the P2P wireless video streaming game, a selfish peer i € N; initially marks every
otheruser j € N, j # i as selfish. Then, in each round ¢, i uses the following strategy:

* First, i bargains the chunk-request quota with other users in the network.

* Then, i updates the credit line D) (j, ¢) as in (12.21) and identifies malicious users
using (12.23).

¢ Ifi receives chunk requests from j, i will accept this request if j has not been marked
as malicious by 7, and (12.5) holds. Otherwise, i will reject the request.

* When 7 requests a chunk, he or she will send the request to peer j, who has the chunk
in the buffer and satisfies

j=arg max P, (12.24)
JENS @), j#i

where Pj; = Pj; x Cc)(j, 1)/ Cs"(j, 1) is the probability that user i successfully
receives a clean chunk from user ;.

Strategy analysis

Using the same analysis as in Section 12.1.4, when there are no attackers, the preceding
multiuser cooperation strategy can be proved to be a subgame perfect and Pareto optimal
Nash equilibrium of the multiuser wireless video streaming game. Similar to the analysis
in Section 12.1.5, this cooperation strategy can resist pollution and incomplete chunk
attacks; the detailed proofis in reference [119]. In this section, we focus on the analysis
of the hand-wash attack and the optimal attack strategy.

As discussed in the previous section, using pollution and incomplete chunk attacks,
the damage that each attacker can cause to a selfish user i is bounded by D{) , which is
negligible if the P2P wireless network has infinite lifetime. However, with the hand-wash
attack, because selfish users cannot recognize malicious attackers after they hand-wash,
malicious users can increase their payoff dramatically. Every (selfish or malicious) user
in P2P wireless video streaming, at the beginning of each round, besides the chunk
request and answer strategies discussed in Section 12.1, can also choose to hand-wash.

For the P2P wireless video streaming game in which every selfish user follows the
cooperation strategy as in Section 12.2.2.2, if a malicious attacker i is not detected by
any other users and if DY)(i, t) < DY) (i, t) for all other users j € N, hand-wash will
not give the malicious attacker i any further gain; because attacker 7 is not detected by
any other users and (12.5) holds for all j € N, all selfish users will still cooperate with

the malicious user i. Using the original identity, the payoff that attacker i receives is the
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same as that if he or she applies the hand-wash attack. Therefore, hand-wash will not
bring the malicious user any extra gain.

On the other hand, if the malicious user i is detected by another user j, or if there
exists another user j € N where DY)(i, t) > DY) (i, t), user j refuses to cooperate with
attacker i any more. If attackers i reenters the game with a new ID, the selfish user j will
cooperate with i again until i is detected again or when (12.5) is not satisfied. Thus, in
this scenario, hand-wash causes extra damages to the selfish user j and helps increase
attacker i’s payoff.

Based on the preceding analysis, the optimal attacking strategy for malicious attackers
is: Upon receiving a request, attackers should always reject the requests, as sending
incomplete or polluted chunks give them no gain; attackers should always send requests
to selfish users until they do not agree to help; and attackers should hand-wash once they
are identified as malicious by one selfish user in the network. For a malicious attacker
to determine whether he or she has been detected, he or she should observe other users’
responses to his or her chunk requests: if a selfish user continuously refuses to send
the requested chunk(s), it indicates that that selfish user has identified him or her as
malicious.

Overrequest for broadcast nature

According to the cooperation strategy in Section 12.2.2.2, in P2P wireless streaming,
users first bargain for their chunk-request quotas and ensure that the total bits to be
transmitted in one round do not exceed the channel capacity. Thus also ensures that
every user is capable of answering all the requests that he or she receives. Based on this
analysis, selfish users have incentives to answer all the requests in every round.

For P2P wireless video streaming, all users share the same wireless cooperation
channel, which is a broadcast channel and allows all users to listen to one another’s
signals. Thus, all requests that ask for the same chunk can be combined into one, and
only one transmission is necessary. This helps reduce the cost of cooperation, and reduce
the total number of bits transmitted in one round. To fully use the channel capacity, we
propose the following overrequest algorithm:

* Given the quota x;, a selfish user i first finds x; chunks that he or she wants the most
and mark these chunk requests as 1 (the requests within the bargained quota). The user
then finds another (K — 1)x; chunks that he or she wants, and marks them 0 (requests
using the extra quota). Here K > 1 is a constant agreed to by all users. Then, user i
sends out all Kx; chunk requests.

¢ In the request-answering stage, all users who receive chunk requests first choose ¢ = 1
chunk to transmit, and exchange this information to confirm that the total number of
bits to transmit does not exceed the channel capacity. If the cooperation channel can
afford to transmit more bits, users increase g until the channel capacity is fully used.
Otherwise, all selfish users answer the chunk requests marked with 1, which ensures
that users can answer all received chunk requests without exceeding the channel
capacity.
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In practice, users may not want to answer all chunk requests that they receive as
suggested in the overrequest algorithm, and they need to decide which chunk requests
to answer and with whom to cooperate. Because the video streaming social network will
last until the end of the video program and has a finite lifetime, selfish users tend to
consider the contributions from other peers when choosing which requests to answer. It
not only encourages selfish users to be always cooperative in the finite-time model, but
also reduces the damage of the hand wash-attack.

We propose the following request-answering algorithm. In round ¢, among all users
who send chunk requests to selfish user 7, user i first excludes all users that he or
she identifies as malicious, as well as those for whom (12.5) is not satisfied. For the
remaining requesting users, user i collects the indices of all chunks that user i has been
asked to upload and puts these chunk indices in a set Cq¥)(¢). If user i decides to upload
q chunks using the overrequest algorithm, for each requested chunk /;, i first calculates

ZmeR(Ij,t)(CS([)(mv 1)+ e)
> heCqn) 2omer.n(CsO(m, 1) + €)

where R(/}, t) is the set of users that request chunk /; from user i at round # and € is a
small number that gives newcomers who have not sent any chunks to peer i a chance to
start cooperation. P%)(1;, t) is the probability that user i would choose to transmit chunk
I;. Then user i will randomly choose g chunks to transmit according to P)(1;, t) for
all chunks /; € C q®(¢). y; is a parameter that controls the sensitivity of user i to other
peers’ contributions. If y; = 0, every peer who sends a request to peer i has the same
probability of being answered. On the contrary, if y; goes to infinity, the request from
the user who has sent the most chunks to peer i will be answered.

PO, 1) = (12.25)

Attack-resistant P2P wireless video-sharing cooperation
strategy with overrequest

From the preceding discussion, the attack-resistant P2P wireless video streaming coop-
eration strategy is as follows:

Any selfish node i € N; initially marks every other node j € N, j # i as selfish.
Then, in round ¢, i uses the following strategy:

* User i uses (12.10) to identify malicious users and uses (12.21) to update D%x @, 1).

* User i bargains with other users and gets the chunk-request quota, which is K times
the time-sensitive bargaining solution in (12.25).

* In the chunk-requesting stage, i applies the chunk-request algorithm (12.24), and
sends chunk requests to users in N(z).

® User i decides q, the number of chunks to transmit in this round, by exchanging
information with other users in the network.

* In the request-answering stage, i first identifies the selfish users who satisfy (12.5).
Then, i chooses the g chunks to transmit based on the probability distribution in
(12.25), and agrees to send the requested chunks to all selfish users who ask for these
chunks and who satisfy (12.5).
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Simulation settings

We use NS2 and C as the simulation platform. In our simulations, we assume that
the users communicate with the access point using IEEE 802.11 within the diameter of
15 meters, and users build their own wireless network that uses a different band dedicated
to cooperation. NS2 is used to simulate the wired network from the live streaming server
to the access point, and the communication between the access point, and the wireless
network users is simulated by C. We use H.264 to encode the video into bit streams
that are labeled and stored sequentially in a file for NS2 to read. User cooperation is
simulated using the C simulator. NS2 and the C program use the log files to exchange
the real-time simulation results.

In our simulations, the link from the wireless access point to the Internet backbone is
a DSL link with 1.5 Mbps download bandwidth. There are thirty users in the wireless
network using the live streaming service, and there are another five users who are using
the Internet resources at the same time. We assume that the traffic generated by the
five Internet users is a Poisson process. The thirty live streaming users are distributed
randomly in the circle of 15-meter diameter, and they can reach each other via the
dedicated cooperation channel. They adopt the enter/leave algorithm from the self-
organizing TDMA [139] to access the dedicated cooperation channel. When a user
enters the algorithm, he or she must first interrupt an existing user’s data slot with a
firing message. Then the user waits until the beginning of the next round to join the
network and exchange buffer map information with other users. After users exchange
the chunk requests and decide how many chunks each user is going to transmit, they take
turn to upload the chunks that they agreed to transmit. When a user leaves the network
or has nothing to request from others in a certain round, he or she can just keep quiet
without doing anything.

We fix the ratio among the laptop, PDA, and PDA2 users as 3:1:1. The video is ini-
tially stored at the original streaming server with an upload bandwidth of 3 Mbps,
and there are another 800 users on the Internet watching the same video stream.
The request round is 0.4 second and the buffer length is 10 seconds with L = 20
and L = 20, which are the buffer length before and after the playback time, respec-
tively. We test the “foreman” and “Akiyo” video sequences with 30 frames per sec-
ond. We encode the video using H.264 into a three-layer bitstream with 75 kbps per
layer, and divide each layer into chunks of 0.1 second. Thus, the layer chunk size is
M’ = 17.5 kilobits. In the wireless network, the chunks are channel-coded using BCH
code with rate 15/31, and the chunk size in the wireless video streaming network is
M = 15.45 kilobits. The thirty live streaming users in the wireless network follow the
wireless video streaming cooperation strategy in Section 12.2.5 if they are selfish users,
and they follow the optimal attack strategy in Section 12.2.3 if they are malicious attack-
ers. In our simulations, we use 8 = Cimax = 1,¢cppar = 0.8¢max, and cppa2:Cppa:Crapiop =
1:0.9:0.4. P,;, = 100mW, the noise power is 10mW, and the available bandwidth
is B = 600kHz. The discount measure d in (9.18) is set to 0.7, and y; in (12.25)
equals 2. PDA2 and PDA users are satisfied with the video quality with the base layer
only.
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Fig. 12.4 Utility of selfish (nonmalicious) users under attack versus the initial credit line

Performance evaluation

The performance of the cooperation strategies is evaluated by the selfish users’ utilities
and PSNR of the received videos when compared with the original uncompressed
videos.

If attackers apply the hand-wash attack and if selfish users do not use the trust model
in Section 12.2.2.1, the selfish users’ utilities will be very small no matter which credit
line they choose. This case is shown as the dashed circle line in Figure 12.4. With the
trust model and the attack-resistant cooperation stimulation strategy in Section 12.2.2.2,
as shown in the X’d solid line in Figure 12.4, the trust model can help significantly
improve the selfish users’ utilities. Here, for a selfish user i, we set Ch(i) in (12.21),
the threshold used to determine who are trusted peers, as two times the initial credit
line. Also, from Figure 12.4, if the initial credit line is chosen carefully between 50 and
200, the highest utility can be achieved even under the hand-wash attack. In Figure 12.4,
we also plot the performance of the proposed cooperation strategies when there are no
attackers; our simulation results show that introducing the trust model does not degrade
selfish users’ utilities when there are no malicious attackers.

Figure 12.5 shows the average selfish users’ utility of the overrequest algorithm.
Following the observations from Figure 12.4, we choose the initial credit line as 50 and
set Ch(i) as 100. When selfish users do not apply the overrequest algorithm in Section
12.2.4 — that is, K = 1 in Figure 12.5 — the average selfish user’s utility drops by 20
percent when the percentage of attackers increases from zero to 50 percent. However,
with K = 3, the average selfish user’s utility remains the same when the percentage
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of attackers increases from zero to 50 percent. This shows that that the overrequest
algorithm can effectively increase the selfish users’ utilities, and the contribution-based
chunk-answering algorithm can also help resist attacks with up to 50 percent malicious
attackers.

Figure 12.6 shows the average PSNR of the selfish laptop users who do not worry about
power outages and whose cost per unit energy is the smallest. In this figure, attackers
apply the hand-wash attack once they are detected, and selfish users use the cooperation
strategy in Section 12.2.5. Figure 12.6(a) shows the robustness of different credit lines
versus the percentage of attackers. When there are more attackers, a higher credit line
gives selfish users a smaller PSNR. This is because the credit line mechanism bounds
the maximal damage caused by only one attacker, and the total damage will increase if
there are more malicious users in the system. Thus, this phenomenon again suggests that
the credit line should be set as the smallest number that can stimulate cooperation among
selfish users, which is 50 in this case. Figure 12.6(b) shows the average selfish user’s
PSNR with different trust thresholds C# in (12.21) versus the number of rounds. It is
clear that after 400 rounds, the selfish user’s PSNR is saturated, and Ch = 0.5D{) (;, 0)
or Ch = D) (j,0) gives smaller PSNRs than Ch = 2D{) (j, 0). These results imply
that a smaller trust threshold C/ will cause more damage to the system, as it may cause
selfish users to trust malicious users as well. On the other hand, from Figure 12.6(b), a
larger Ch needs more rounds for the selfish users’ PSNR to saturate, and selfish users
need to wait for more rounds before they trust each other. Each user should choose Ch
based on how long he or she will stay in the network.
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Fig. 12.6 Simulation results of the PSNR of the selfish laptop users

Furthermore, we compare our cooperation strategy with the payment-based incentive
scheme of Tan and Jarvis [93] and the resource chain trust model for P2P security [140].
The credit line is set to 100, and users choose K = 3 in the over request algorithm. We
first compare the attack resistance of the three algorithms in Figure 12.7(a) and plot the
average PSNR of the videos received by a selfish laptop user. It is clear that our proposed
cooperation strategy achieves the best attack resistance among the three, and we do not
observe obvious performance drops even when 60 percent of the users are attackers.
We also compare the average PDA user’s utility of the three algorithms when there no
attackers in Figure 12.7(b). We can see that our proposed scheme gives the PDA users
a higher utility, as it takes into consideration users’ desired resolution. In our proposed
scheme, a PDA user will not request higher-layer chunks but instead use all of his or
her chunk-request quota to ask for base-layer chunks, which gives him or her a higher
utility.
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cooperation strategy, and resource chain trust model

Chapter summary and bibliographical notes

Misbehavior identification heavily influences the system performance in P2P media
sharing social networks. With trustworthy malicious user detection and attack-resistant
cooperation strategies, users are encourage to be more cooperative in P2P media sharing
social networks, thus leading to much better streaming performance.

In this chapter, we consider the three most common malicious attacks in P2P media
sharing systems: the incomplete chunk attack, pollution attack, and hand-wash attack.
For each type of attack, we design a detection mechanism to identify attackers and
to protect nonmalicious selfish users. We also model the behavior of selfish users and
malicious users as a noncooperative game and analyze the attack resistance of the
equilibrium, which is the optimal strategy for all users. Simulation results show that the
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attack-resistant cooperation strategy and the malicious behavior detector can resist up
to 50 percent of attackers.

Trust modeling can be much more complicated than what we discussed in this chapter.
The beta-function-based method was discussed by Josang and colleagues [141] and the
influence of trust among users on social networks was studied by Sun and associates [86].
Interested readers can see reference [7] for the pollution attack. The DoS attack studied
by Naoumov and Ross [85] can exhaust users’ resources and make the P2P system
unavailable. Readers are referred to reference [85] for a detailed discussion of the DoS
attack.
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Misbehavior detection in colluder
social networks with different
structures

Different social networks may have different structures. The discussions in the previ-
ous chapters focused mainly on distributed scenarios. For example, there are no central
authorities in the colluder social networks in Chapters 5 and 8, and the P2P systems
in Chapters 9 and 12 are fully distributed, meaning that every peer takes the same
role. In reality, some social networks have a centralized structure in which there are
one or more entities whom all users trust and who can facilitate interaction among
users. For example, the first generation P2P file-sharing networks (for example, the
Napster music file-sharing system) used a set of central servers to provide content
indexing and search services [142]. Although these servers cannot enforce user coop-
eration, they can facilitate user interaction. Other media-sharing social networks have
a distributed structure and a flat topology in which users take the same role — for
example, Gnutella and Chord [142]. Distributed schemes should be designed for such
social networks. In this chapter, we use colluder social networks in multimedia fin-
gerprinting as an example to investigate the impact of network structure on social
networks.

In colluder social networks, as discussed in Chapters 5 and 8, colluders aim to achieve
fair collusion, which requires all colluders to report their received fingerprinted copies
honestly. As discussed in Chapter 11, the assumption of fair play may not always
hold, and some colluders may process their fingerprinted copies before collusion to
further lower their risk of being detected. Precollusion processing reduces the cheating
colluders’ relative risk with respect to their fellow colluders, and in some scenarios, it
may even increase other colluders’ probability of being detected. Therefore, it is of ample
importance to design monitoring mechanisms to detect and identify misbehaving users,
and to design cheat-proof cooperation stimulation strategies in media-sharing social
networks.

To analyze user dynamics in social networks with cheating users, the first step is to
study the cheating strategies that users can use, and then design monitoring mechanisms
to detect and identify misbehaving users [ 143]. Such a monitoring mechanism facilitates
the design of cheat-proof strategies, which makes noncooperation nonprofitable; thus,
cheating users have no incentives to cheat.

In this chapter, we explore possible strategies to detect and identify cheating colluders,
investigate the impact of network structures on misbehavior detection and identification,
and analyze the cheat-prevention performance. Addressing different structures in dif-
ferent social networks, we first consider a centralized social network with a trusted
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ringleader and investigate misbehavior detection with the trusted ringleader’s help. We
then consider the peer-structured social networks in which all colluders take the same
role, and examine autonomous cheating colluder identification.

Behavior dynamics in colluder social networks

In this chapter, as an example we user equal-risk fairness, in which all colluders take the
same risk of being detected. From the discussion in Chapter 11, to further reduce their
risk, a cheating colluder may average or swap neighboring frames of similar content or
change the temporal resolution of his or her fingerprinted copy. Here, we use the temporal
filtering in Section 11.1.1 as an example, and investigate how to detect temporal filtering
precollusion processing.

Misbehavior detection and identification

Recall that S; is the jth frame in the original host signal, and X?) =S, + W?) is the
fingerprinted frame j that user i receives from the content owner. Here, we drop the
term JND to simplify the notations. In this chapter, we consider orthogonal fingerprint
modulation, in which fingerprints assigned to different users are orthogonal to each other
with equal energies. A cheating colluder uses (11.1) to process his or her copy, and uses
(11.8) to select the parameter A ; to minimize the risk of being detected under the quality
constraint on the processed copy 5(?) .

Define SC as the set containing the indices of all colluders. SC; € SC includes all
cheating colluders, and SC;, = SC\SC; is the set with the indices of all honest colluders
who do not apply precollusion processing. Let )~((I-i) be the jth frame from colluder i. For
honest colluders £ and /, we have '

XO=x® =5, +W¥ and XV=x"=s, + W/ (13.1)
For a cheating colluderi € SCs,

o 1—2, 1=
X(]l): J ]X(l)

2 j+1

(@) (@)
X+ a,X0 +
=S, + AS; () + WY,

S._ S;
where a5,0,) = (1= 1) (3504 520 ).

o | ) . 1—A: )
i) __ J (@) (i) J wxr (i)
and Wj _TWj,I—f-)\jo + ——W:

SWL (13.2)

From (13.2), temporal filtering not only averages fingerprints embedded in adjacent
frames and attenuates their energies, but also filters neighboring frames in the host
signal and introduces extra distortion AS;(A ;).

For the jth fingerprinted frames from colluder & and /, define D;(k, ) 2 ||5(5—k) —
XSD| |>. Because {Wﬁk)}, {W;”}, and {Wy)} are orthogonal to each other, from (13.1) and
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(13.2), we have
Dk, 1) ~ W2 + W2,

. k (i
and  Dj(k, i) ~ W2+ W2+ | AS; ()11,

Sj 1+Sj+1 :

S, (133)

where  [|AS;(A)1* = (1 — x;)* x ‘

For honest colluders k and /, D;(k, ) can be approximated by the summation of the
energies of the two embedded fingerprints W( ) and W(l) For the honest colluder £ and

the cheating colluder 7, in addition to the summation of | |W(k)| |2 and ||W(')| |2, D; i (k, i)
also includes the additional distortion ||AS;(A; II? 1ntr0duced by temporal filtering.
Therefore, D;(k, i) has a much larger value than D;(k, ). For a given video sequence,
from (13.3), the difference between D;(k,i) and D;(k,[) is more obvious when A ;
takes a smaller value. In addition, |D;(k,7) — D;(k, )| takes a larger value when the
scene of the host video sequence changes quickly and the difference between adjacent
frames is larger. This observation suggests that {D;(k, )} can help honest colluders
detect precollusion processing and identify cheating colluders.

Before a colluder decides with whom to collude, he or she is unwilling to give
others the received fingerprinted copy that contains his or her identification informa-
tion. Therefore, cheating colluder detection and identification must prevent colluders
from accessing the fingerprinted coefficients in others’ copies. To meet this antiframing
requirement in cheating colluder detection and identification, all fingerprinted copies
must be encrypted appropriately during this misbehavior detection process.

Addressing different network structures, in this chapter, we first consider a centralized
social structure in which there is a ringleader whom all colluders trust. We investigate
how the trusted ringleader can help detect precollusion processing and identify cheating
colluders. We then consider the distributed peer social structure of the colluder social
networks, and study the autonomous cheating colluder detection and identification, in
which colluders help each other detect misbehavior and identify cheating colluders. In
this chapter, we consider the scenario in which there are only a few cheating colluders,
and most colluders honestly report private information of their fingerprinted copies to
others. In such scenarios, we investigate how honest colluders can collaborate with one
another to accurately identify misbehaving users and analyze the performance of the
misbehaving-user identification algorithm.

Performance criteria

The cheating colluder detection and identification process aims to accurately identify all
cheating colluders without falsely accusing any others. To measure the performance of
the cheating colluder detection and identification algorithm, we consider two types of
detection errors and use the following criteria:

P,,4: the rate that an honest colluder misses a cheating colluder during detection; and
* Py,: the rate that an honest colluder falsely accuses another honest colluder as a
cheating colluder.
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To evaluate the antiframing performance, assume that the fingerprinted frame ; that
colluder i receives is X?) = [X(/.i)(l), X;”(2), cees X_E.i)(Nj)}, where X_E.i)(l) is the /th

component in Xy) , and Xy) is of length N;. During the cheating colluder detection
and identification process, without proper protection, it is possible that another col-
luder k can access some of the fingerprinted coefficients in XS’). Assume that Indgk”) C

{1,2,..., N;} includes the indices of all the fingerprinted coefficients in X?) that col-

luder & can access, and define Indﬁbé Uiesc.izk Indﬁk’i). If Indi?‘) ={1,2,..., N;}, then
colluder k£ can generate a new copy of high quality that does not contain any information
on his or her own fingerprint and that can be used to frame other colluders in SC.

To evaluate the resistance of our algorithms to framing attacks, we define

LE [|Ind§.’"|}

Yi= ., 0=y =<1, (13.4)
J

where E[X] returns the statistical mean of X, and | 4| is the size of the set 4. A smaller
y; indicates that the cheating colluder detection and identification process is more robust
against framing attacks.

Centralized colluder social networks with trusted ringleaders

In this section, we consider a centralized colluder social network in which there is a
trusted ringleader, and we study how to detect and identify cheating colluders there. All
colluders believe that the trusted ringleader will not give their fingerprinted copies to
others; the ringleader will not frame any colluders; and the ringleader will not modify
the cheating colluder detection and identification results.

To identify cheating colluders, each colluder i first generates a secret key K ) shared
with the ringleader only, encrypts his or her fingerprinted copy with K to prevent
others’ eavesdropping on the communication, and transmits the encrypted version to
the ringleader. Because K is known to colluder i and the ringleader only, no one
but colluder i and the ringleader can decrypt the transmitted bit stream, and other
colluders cannot access the fingerprinted coefficients. After receiving and decrypting
the transmitted bit streams from all colluders, the ringleader examines these fingerprinted
copies and helps detect and identify cheating colluders. Finally, colluders exclude those
identified cheating colluders from multiuser collusion.

In this chapter, we consider the scenario in which colluders receive fingerprinted
copies of the same quality (i.e., same SNR). When they receive fingerprinted copies
of different quality owing to network heterogeneity and dynamically changing channel
conditions, a challenging issue is to differentiate the scenario in which the colluder
intentionally changed his or her received fingerprinted copy from another one in which
this copy was transmitted through severely congested and erroneous networks. (In our
future work, we plan to investigate cheating colluder detection and identification when
colluders receive fingerprinted copies of different quality.)
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Detection of temporal-interpolation—based precollusion processing

Following the discussion in Section 13.1.1, in this chapter, we use {D;(k, [)} to detect
precollusion processing and identify cheating colluders. Figure 13.1 shows an example
of the histogram of { D (k, [)} jesc for the second frame in sequence “carphone.” Other
frames and other sequences give the same trend. In our simulations, we adopt the human
visual model-based spread spectrum embedding [58] and embed fingerprints in the DCT
domain. Fingerprints are generated from Gaussian distribution V'(0, 02) witho2 = 1/9.
During collusion, we assume that there are 150 colluders and SC is the set containing
their indices.

In Figure 13.1(a), there are no cheating colluders and all colluders provide one
another with correct information on their fingerprinted copies. In Figure 13.1(b), there
is one cheating colluder i; who applies temporal filtering before collusion. During pre-
collusion processing, i; selects the parameter A; = 0.6031 to generate a new frame
i?l) with PSNR of 40 dB when compared with the originally received one, X?‘). In
Figure 13.1(c), there are two cheating colluders, 7; and i», who process their fingerprinted
copies independently and impose different fidelity constraints. As in Figure 13.1(b), i}
generates a new frame )~((;‘) of 40 dB. During precollusion processing, i, selects the

parameter A; = 0.7759 such that the new copy i(j&) has a PSNR of 45 dB. From
Figure 13.1, when all colluders give one another correct information about their
fingerprinted signals, {D;(k,[)}; esc are from the same distribution with a single
mean. If some cheating colluders process their fingerprinted copies before collusion,
{D;(k, D)} iesc are from different distributions with distinct means.

Let us define

D,(SCh. SC) 2 {D(k. 1) k.1 € SCy k # 1}
D,(SC,. SC) 2 (Dj(k. 1) : k € SC,.1 € SC,). (13.5)

From (13.3), the distance between D ;(SCj, SCj;) and D ;(SCj, SC;) depends on the
selected parameter A;, as well as on the host video sequence. In Figure 13.1(c), the
sample means of D ;(SC;, SCp), D (i1, SCp), and D (i, SCy) are 4.7, 10.8, and 6.7,
respectively. Thus, the difference between © ;(SCy, SCj) and D ;(SCy, SCy) is larger
when the cheating colluders select A ; of smaller values. We also consider video sequences
of different characteristics: “carphone,” which has moderate motion and “flower,” whose
scene changes very fast. Figure 13.2 shows the histogram of {D;(k, /)}. Here, A is fixed
as 0.7. In Figure 13.2(a), ©;(SCy, SCy) has a sample mean of 4.7 and D (i}, SCy)
has a sample mean of 8.2. In Figure 13.2(b), the sample means of D ;(SCy, SCj)
and 9;(i;, SCy) are 15.8 and 108.2, respectively. Comparing Figure 13.2(b) with
Figure 13.2(a), ®,;(SC}, SCp) and D ;(SCy, SCy) are separated farther away from each
other when the scene changes quickly (for example, in sequence “flower”), as the norm
[|AS; (X ;)] is larger.

This analysis suggests that the histogram of {D;(k, [)} can be used to determine
the existence of cheating colluders. The ringleader calculates D(k, [) for every pair of
colluders (k, /) and broadcasts {D;(k, [)} to all colluders. If { D(k, [)} are from the same
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Fig. 13.1 Histogram of {D;(k, [)}; jesc on the second frame of sequence “carphone”
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distribution with a single mean, then all colluders keep their fair-collusion agreement
and there are no cheating colluders. If { D(k, /)} are from two or more distributions with
different means, there exists at least one cheating colluder who applies precollusion
processing.

In the preceding examples, D ;(SCj, SCs) and D ;(SCy, SC;) do not overlap,
which enables honest colluders to easily detect the existence of cheating collud-
ers. We now consider the scenario in which ©;(SCjy, SCs) and D ;(SC;, SCy)
overlap. Let D7 (SCy, SC;) = max (Qj(SCh, SC;,)) and D;”["(SCS, SCp) =
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min (i)_]-(SCS, SCh)) be the largest and the smallest values in ©;(SCy, SCp) and
D;(SCq, SCy), respectively. Given the total number of colluders K, we define the
overlap ratio as

s

k,leSC

I[DY™"(SCy, SCy) < Dj(k, 1) < Dy (SCy, SCy)]
K(K — 1)/2 ’

(13.6)

where /[-] is the indicator function and the denominator is the total number of col-
luder pairs. The two distributions overlap by a larger ratio when c¢ takes a larger value,
and the two distributions do not overlap if ¢ =0; that is, D} (SCy, SCy) <
DI"(SCs, SCp).

We use the second frame in sequence “carphone” as an example, assuming that 10
out of 150 colluders are cheating and process their fingerprinted copies independently
before collusion. We observe a similar trend for other frames and other parameters. We
intentionally move the two distributions D ;(SCy, SCj) and D ;(SC}, SCp) and let them
overlap. Figure 13.3(a) and (b) show the resulting histograms of {D;(k, [)}; ;esc when
D;(SCq, SCy) and D ;(SCy, SCp) overlap by 20 percent and 75 percent, respectively.
From Figure 13.3, we can still observe the bimodality of {D;(k, /)} esc when c takes a
small value. When ¢ > 75%, © ;(SCy, SCy) and D ;(SCj,, SCj) merge, which prevents
the detection of cheating behavior. Thus, the bimodality of {D;(k, [)} can help detect
the existence of precollusion processing when the overlap between D ;(SCy, SCj) and
D ;(SCy, SCy) does not exceed 75 percent.

Identification of cheating colluders

After receiving the broadcasted {D;(k, /)} from the ringleader, colluders examine the
histogram plot of {D;(k, )} to determine the existence of cheating colluders. Further
identification of cheating colluders requires detailed examination of {D;(k, )} — in
particular, D ;(SCy, SCy). For each D;(k,l) € D ;(SCy, SCy), the two corresponding
colluders, &k and /, are in different subgroups: one belongs to SC; and the other is a
cheating colluder in SC;. Thus, analysis of each individual D;(k, /) in ©;(SC, SCy)
can help separate SC into two subgroups and, therefore, enables cheating colluder
identification.

To identify cheating colluders, a simple solution is to examine the histogram of all
{D;(k, 1)} and use a threshold to separate D ;(SCj, SCy) from D ;(SCy, SCy). How-
ever, the values of {D;(k, )} change from sequence to sequence, and D ;(SC;, SCy)
and D ;(SCy, SC;,) may overlap. Thus, the thresholding-based method may introduce
errors and thus affect the accuracy of the identification algorithm. To address this issue,
from Figure 13.3, a larger value of D;(k, /) gives higher confidence that D,(k, ) is in
D ;(SCp, SCs) and that the two corresponding colluders, k£ and /, belong to different
subgroups. Thus, our algorithm starts with D;(k, [) that has the largest value (and thus
gives the detector the highest confidence) and determines which of the corresponding
two colluders is cheating. Then, it moves to the next largest D;(k, /). It repeats this
procedure until every colluder in SC has been identified as either a cheating colluder
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Fig. 13.3 Histogram of {D;(k, [)}i esc for the second frame in sequence “carphone” with
overlapping D ;(SCs, SC;,) and D ;(SCy,, SCy)

or an honest colluder. Thus, instead of using all {D;(k, )}, our algorithm uses only
those that give higher confidence to accurately identify cheating colluders even when
D;(SCh, SCs) and D ;(SCy,, SCy) overlap.

In addition, given {D;(k, [)}, even if ®;(SC}, SCy) and D ;(SCy, SCy) do not over-
lap, the ringleader can only separate colluders into two subgroups, but cannot tell
which contains the honest colluders. Instead, an honest colluder knows that he or she
is in SCy, and given a D;(k,[) and the two corresponding colluders & and /, he or
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she can immediately determine the subgroups that they are in. Therefore, in our algo-
rithm, the honest colluders themselves (instead of the ringleader) identify cheating
colluders.

Algorithm 13.1 gives the details of how colluder i in SC;, identifies cheating
colluders. For a total of KC colluders whose indices are iy, is,...,ixc, ® =
[®D(iy), DD(is), ..., PD(igc)]. Colluder i sets @ (k) = 1 when he or she detects
that colluder  is a cheating colluder, and ®“)(k) = 0 if i believes that colluder & is an
honest colluder. W, = {k : ®?(k) # —1} includes the indices of all colluders for whom
i has identified which subgroups they belong to in the previous rounds.

Algorithm 13.1 Cheating colluder identification by «) in SC),

Set W, = {i}, ®V = —1,,x¢, ®P(@)=0,and m =0
while ¥; # SC do
m=m-+1
select D;(k, ) with the mth largest value and take the indices of the two corre-
sponding colluders
if k¢ ¥, AND! ¢ U, then
if D;(i, k) > D;(i,!) then
OV (k) =1;00() =0; ¥, = ¥, U {k, [}
elseif D;(i, k) < D;(i, /) then
®D(k) = 0; () = 1; ¥, = ¥, U {k, [}
end if
elseif k € ¥, AND/ & ¥, then
OO =1—dD(k), ¥, =W, U {l}
elseif / € ¥, AND k ¢ U, then
OD(k)=1—dD(), ¥, =¥, U {k}
end if
end while
Return §E‘i,l) = {k: ®D(k) =1}

An honest colluder i first initializes ) to an undetermined status —1 and sets (i)
to 0, as he or she is in subgroup SCj,. Then, i examines every D,(k, [) and starts with
the largest one. Given a D;(k,[), i first checks whether he or she has determined the
values of ®? (k) and ®@(/) in the previous rounds.

* If both ®?(k) and (/) have been decided, i moves to the next largest D, (k, ).

* If one of them is set to either 0 or 1 while the other is still undetermined with value
—1, without loss of generality, assume that ®®)(k) has been determined previously,
then i sets ®(/) = 1 — ®V(k).

* If i is unable to determine either ®@ (k) or ®?)(/) in the previous rounds, he or she
then compares the values of D;(k, i) and D;(/, 7). Without loss of generality, assume
that D;(k, i) > D;(l, i). In this scenario, compared with colluder /, colluder k is more
likely to be a cheating colluder. Thus, i sets ®@(/) = 0 and P (k) = 1.
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Colluder i repeats the above process and stops when W; = SC and all the components

in @ have been set to either 0 or 1. Algorithm 13.1 outputs S%ii) = {k: ®D(k) = 1},
which is the set containing the indices of all colluders whom u” detects as cheating
colluders.

Cheating colluder detection and identification and performance evaluation

Cheating colluder detection and identification

To summarize, if the colluder social network has a centralized structure with a trusted
ringleader, the key steps in the cheating colluder detection and identification process are
as follows for each frame ;.

e Step 1. Encryption: Each colluder i first generates a secret key K shared with the
ringleader only, encrypts the fingerprinted copy with K, and transmits the encrypted
copy to the ringleader.

e Step 2. Calculation of { D}: After decrypting the bit streams received from all collud-
ers, the ringleader calculates D, (k, I) for each pair of colluders (%, /). The ringleader
then broadcasts {D;(k, )} to all colluders, together with his or her digital signa-
ture [144].

* Step 3. Detection of precollusion processing: Colluders in SC, first examine the
histogram of {D;} to detect precollusion processing. If {D;} are from the same distri-
bution with a single mean, then there are no cheating colluders, and the colluders skip
Step 4 and collude with each other. If {D;} are from two or more distributions with
different means, there is at least one cheating colluder and honest colluders go to Step
4 to identify cheating colluders.

* Step 4. Cheating colluder identification: 1f Step 3 detects the existence of cheating
colluders, each honest colluder in SC), applies Algorithm 13.1 to estimate the identities
of the cheating colluders.

Performance evaluation

In this cheating colluder detection and identification process, all the fingerprinted copies
are encrypted during transmission. For each copy, only the corresponding colluder and
the trusted ringleader can access the fingerprinted coefficients, whereas other colluders
do not have the decryption key and cannot decrypt the transmitted bit stream. Therefore,
y; = 0 and the cheating colluder detection and identification process is robust against
framing attacks.

To evaluate the detection performance, we select three typical video sequences, “miss
america,” “carphone,” and “flower,” and test on the first ten frames in each sequence
as an example. Other frames and other sequences give the same result. The simulation
setup is the same as that in Section 13.2.1. Orthogonal fingerprints are generated from
Gaussian distribution N'(0, 62) with 02 = 1/9. In each fingerprinted copy, fingerprints
that are embedded into neighboring frames are correlated with each other, depending
on the similarity between the host frames. Human visual model-based spread spectrum
embedding [58] is applied to embed fingerprints into the host signal. We assume that
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Fig. 13.4 Performance of the cheating colluder identification algorithm with overlapping
D(SCy, SCs) and D(SCy, SCy)

the total number of colluders is 150. There are ten cheating colluders and each pro-
cesses his or her fingerprinted copy independently before collusion. Among the ten
cheating colluders, five of them select the parameter A; to generate new frames with
PSNR of 40 dB, and the other five cheating colluders generate new frames with PSNR
of 45 dB.

For each frame in every sequence, we run 1000 simulation runs to test the perfor-
mance. In all our simulation runs, Algorithm 13.1 accurately identifies all cheating
colluders in SC; without falsely accusing any honest colluder, and the cheating colluder
detection and identification algorithm does not make either type of detection errors.
This is because temporal filtering not only averages fingerprints embedded in adjacent
frames and reduces the cheating colluder’s risk, but also filters adjacent host frames
and introduces extra distortion into the host signal. This extra distortion makes the two
distributions, D (SCj, SCy) and D(SCy,, SCy,) in Figure 13.1, separate from each other,
and it enables our algorithm to correctly identify the cheating colluders without falsely
accusing any others.

We then consider the scenario in which ®(SC,, SC;) and D(SCy, SCy,) overlap with
each other, and Figure 13.4 shows the simulation results. We use the second frame
of “carphone” as an example, and assume that there are ten cheating colluders who
process their copies independently. We observe the same trend for other frames and other
parameters. In Figure 13.4, we stop the simulations when ¢ > 75 percent, because in
those scenarios, D(SCj, SCy) and D(SCj,, SCp) merge and the bimodality of {D;(k, 1)}
cannot be observed. From Figure 13.4, the miss detection rate is below 0.5 percent
and the false alarm rate does not exceed 3.5 percent, and our algorithm can accurately
identify cheating colluders even if the two distributions overlap.
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Distributed peer-structured colluder social networks

When there is no trusted ringleader, colluders form a peer-structured social network
and they help one another detect and identify cheating colluders. In this section, we
consider the scenario in which there are only a few cheating colluders, and study
autonomous cheating colluder identification. We also address potential attacks on the
autonomous cheating colluder identification scheme, and analyze the scheme’s attack
resistance.

Cheating colluder detection and identification without a trusted ringleader

Without a trusted ringleader, the challenge is to accurately calculate {D;(k, [)} while
still protecting the secrecy of the fingerprinted coefficients. In this section, we study how
to calculate D;(k,[) for a given pair of colluders (k, /) without a trusted ringleader.
Then we investigate autonomous cheating colluder identification for a group of
colluders.

Calculation of D;(k, )

For each pair of colluders (k, /), assume that X(k) and X(l) are the fingerprinted copies
from colluders & and /, respectively. Colluders k and / cannot calculate D;(k, [) them-
selves, because it will leak the fingerprinted coefficients in X(k) and X(l) to each other and
violate the antiframing requirement. Thus, without a trusted rmgleader they must find
a third colluder i to help them calculate D;(k, /). To prevent colluder i from accessing
the fingerprinted coefficients in X(k) and X(l) colluders £ and / should process their
fingerprinted copies beforehand, and let i calculate D, (k, /) from the processed ng) and
X0,

Define f(-) as the function that k£ and / use to process their copies, and let Yﬂ-k) and Yy)
be the processed copies of X(k) and X(l) respectively. To enable colluder i to calculate
Dj(k,1) from YF;O and Y( ) , it is requlred that f(-) does not change the MSE between
these two copies and

Dtk = 1YY = Y|P = X[ = XPIP = D, (k. D). (13.7)

In addition, it is required that given Y&k) and Yy), i cannot estimate the fingerprinted
coefficients in )N(gk) and iy) , respectively.

In this chapter, we use a simple component-wise addition-based method to process
)N(i,k) and i;” . (Other methods that protect the fingerprinted coefficients and satisfy (13.7),
such as the isometry rotation and the permutation-complement—based encryption [145],
can also be applied.) Assume that igk) and )~(5-1) are of length N,. Given a key K*!
shared by colluders k and / only, they use K/ as the seed of the pseudo random number
generator and generate a random sequence V D of length N;. The N; components in

yc ) are i.i.d. and uniformly distributed in [— Ll , U]. Then, colluders k and / add Vy"l) to
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their fingerprinted copies component by component, and calculate
(k) f(X(k) Kk l) X(k) + V(k D)
and Y“) S, kFy = XD 4 v, (13.8)

respectively. Thus, |[YY) — ¥{|12 = X[+ v - XP — vl 2 = ) XP - XP2,
and (13.7) is satisfied. To hide information of the embedded ﬁngerprmts colluders
should select a large U/ and let the random sequence V(]-k’l) have large amplitude.

Let Enc(X, K) denote the encryption of message X with key K. To calculate D;(k, [),
as shown in Figure 13.5:

* Colluders k and / first generate a secret key K*/. Then, colluder k generates a secret
key K* shared with colluder i only, and XK'+ is a key shared by colluder / and i.

* Colluder £ first processes his or her fingerprinted copy )~(5'k) using (13.8), then encrypts
it with key K* to protect the fingerprinted coefficients in )~(5-k). (Similar to the scenario
with a trusted ringleader, encryption here is used only to secure communications
between two parties and to prevent eavesdropping, and it will not affect the later steps
in cheating colluder identification, as well as multiuser collusion.) Then, colluder &
transmits the encrypted copy Enc ( f ()N(&k), Kkh, K k") to i. Colluder / repeats the
same process.

* Colluder i calculates D;(k, 1) = || /X', K*) — f(X?, K*')|%, and broadcasts
D ;(k, I) together with his/her digital signature.

Autonomous detection and identification of cheating colluders
To extend the preceding algorithm to a group of colluders, for each frame ; in the video
sequence:

* Colluders randomly divide themselves into two subgroups SC; and SC, where
SC;USC, = SC and SC; N SC, = @." Colluders in SC; randomly select an assis-
tant iy € SC; to help colluders in SC, calculate {D;(k, [)} jesc,. Similarly, i, € SC;
is randomly selected to help colluders in SC; calculate {D;(k, I)} esc, -

T We use two subgroups as an example; the algorithm can be easily extended to scenarios with more than two
subgroups.
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* Assume that K5¢1 is a key shared by colluders in SC,. Each colluder / in SC, generates
a secret key K’ shared with the selected assistant i, € SC,. Then, colluder / uses
(13.8) to process his or her fingerprinted copy )NC(/-I) and generates f ()~((/-l), K5C1). Then,
colluder / encrypts his or her copy with key K’> and transmits the encrypted version
Enc (f(f((j[), K5S¢, K“2> to the selected assistant i, in SC,. Colluders in SC, follow
the same procedure, process and encrypt their fingerprinted copies, and transmit them
to the selected assistant i; in SC;.

¢ After decrypting the bit streams received from all colluders in SC|, for each pair of
colluders (k, 7) in subgroup SC|, the selected assistant i, € SC, calculates D i(k, 1) =
/X0, k56 — £(XY, K517, and broadeasts {D;(k, i esc, to colluders in
SC) together with his or her digital signature. Note that i, calculates D ;(k, 1) only
when both & and / are in subgroup SC,. Assistant i; € SC, repeats the same process
to help colluders in SC; calculate {5 i(k, )} forall k, [ € SCs.

* Given {5]- (k, D}k 1esc,, colluders in SC; apply the same method as in Section 13.2.3.1
to detect and identify cheating colluders in SC;. Similarly, colluders in SC, examine
{5 i (k, D}k 1esc, and identify selfish colluders in SC,.

Finally, honest colluders combine the detection results from all frames in the sequence,
and exclude identified cheating colluders from collusion.

Performance of the autonomous cheating colluder detection
and identification scheme

In this section, we investigate how cheating colluders can actively attack our algorithm
and manipulate the detection results to avoid being detected. We also provide techniques
to ensure accurate identification of cheating colluders even under such attacks. Here, we
consider the scenario in which there are only a limited number of cheating colluders.
We assume that if honest colluders are selected as assistants to help calculate {D i}, they
will give others correct values of {5 i(k, D)}

Group of cheating colluders

The performance of the cheating colluder detection and identification algorithm depends
on the correctness of {Bj(k, )}. If all the selected assistants give the other colluders
correct values of {5 ;(k, 1)}, this autonomous cheating colluder detection and identifica-
tion scheme has the same performance as that in Section 13.2.3.2, and honest colluders
can correctly identify cheating colluders in SC; without falsely accusing others. How-
ever, during the autonomous cheating colluder detection and identification process, it is
possible that two or more cheating colluders collaborate with each other to change the
detection results. Figure 13.6 shows an example.

In Figure 13.6, the simulation setup is the same as that in Figure 13.1(b). We assume
that there are two cheating colluders i; and i5, and they are in different subgroups during
the autonomous cheating colluder detection and identification process. Without loss of
generality, assume that i; € SC| and i, € SC,. In SC;, there are K, = 75 colluders
and we assume that the other 74 colluders in SC; do not process their received copies.
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Fig. 13.6 Histogram plots of { IN),- (k, D}k resc, for the second frame in sequence “carphone”
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Figure 13.6(a) plots the unchanged histogram of {D;(k, [)}« iesc,, from which Algo-
rithm 13.1 can correctly identify colluder i, as a cheating colluder. If the cheating col-
luder i, is selected as the assistant to help colluders in SC; calculate {5j (k, D}ktesc,, 11
can modify the values of {5 i (k, D)}x.1esc, and let them be from the same distribution —
for example, as shown in Figure 13.6(b). Then, Algorithm 13.1 cannot identify i, as a
cheating colluder and it makes a miss-detection error. The cheating colluder #; can also
change the values of {15 i(k, D}k esc, and let the histogram be the same as in Figure
13.6(c), where SC} = SC,\{i3, i4}. Here, Algorithm 13.1 not only misses the real cheat-
ing colluder i,, but it also falsely accuses another two honest colluders, i3 and i4. Using
the same method, the cheating colluder i, can also prevent colluders from detecting i;’s
precollusion processing, or make them falsely accuse honest colluders as cheating.

Multiple assistants for each subgroup

To reduce the probability that these cheating colluders can successfully change the

detection results, in each subgroup, a straightforward solution is to select multiple

assistants to calculate {D ;} and use a majority vote when identifying selfish colluders.
For each frame j, as in Section 13.3.1.2, the colluders first randomly divide themselves

into two nonoverlapping subgroups, SC; and SC,. To detect and identify cheating

colluders in SC:

* m colluders are randomly selected from SC, to help calculate {5 i (k, D} resc,> and
A;(SCy) = {iz1, 022, ..., I2,m} contains their indices.

* For each selected assistant i, , € A;(SC3), colluders in SC; follow Step 2 in Section
13.3.1.2, process and encrypt their fingerprinted copies, and transmit them to i, ,.

* Each selected assistant i , in A ;(SC) follows Step 3 in Section 13.3.1.2 to calculate
57 (k, 1) = ||f()~(5k), K56y — f(iy), KSE))||? for all k, I € SC;, and broadcasts the
results to colluders in SC; together with 7, ,’s digital signature.

* For every honest colluder £ € SCy, given {5}“(1{, D}r.1esc, received from the assis-
tant iy , in A;(SC), colluder k follows Step 4 in Section 13.3.1.2, examines the
histogram of {5;2"’(k, D}riesc,, and uses Algorithm 13.1 to detect and identify
cheating colluders. For every / € SC and for each i, , € A;(SC3), colluder k sets
v;-k)(n, I) =1 if Algorithm 13.1 identifies / € SC; as a potential cheating colluder

from {IND;Z"’ (k, D}k jesc,, and U;—k) (n, 1) = 0 otherwise. Then colluder £ combines the

m detection results {v;k)(n, D)}n=1....m and uses majority vote to determine whether

colluder / is a cheating colluder. If Y_"_, U;k) (n,1) > [m/2], colluder & believes that

colluder / processed his or her copy before collusion and sets TJ(-k)(l) =1. T](-k)(l) =0
otherwise.

The same procedure is used to identify cheating colluders in SC5.

To further improve the performance of the cheating colluder detection and identifi-
cation algorithm, colluders in SCj, should jointly consider the detection results from all
frames in the video sequence when making the final decision on the identities of the
selfish colluders.
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For each frame ; in the video sequence, in Step 1 of the autonomous cheating colluder
detection and identification, define

1 if k and / are in the same subgroup,

INAE (13.9)

0 otherwise.

For every pair of colluders (k, /), we further define F(k,/) £ {j : 1j(k, 1) = 1}, which
contains the indices of all frames in which colluder & and / are assigned to the same
subgroup.

For an honest colluder k € SCj, to determine whether X is the original copy that
colluder / received from the content owner, & jointly considers all the detection results
{T;k)(l)}_,-e F(,1 that he or she has, and considers colluder / as a cheating colluder if
the average of {T](k) (D)} jeF .1 is above a pre-determined threshold «. Colluder & then
outputs the estimated cheating colluder set

N eran T
o {1 : ZJE|FFUEI?I)1|() - O,}_ (13.10)

A larger o helps lower the false-alarm rate at the cost of a higher miss-detection rate;
the selection of the parameter « should address the tradeoff between the false-alarm and
the miss-detection rates.

Performance analysis

In this section, to address the unique issues in autonomous cheating colluder identifica-
tion, we investigate how such a group of cheating colluders can manipulate the detection
results and how this affects the performance of the autonomous cheating colluder detec-
tion and identification scheme. For each frame in the video sequence, define P, as the
probability that the group of cheating colluders can successfully manipulate the detec-
tion results and intentionally let others make errors when detecting cheating behavior.
In this section, we first analyze P, and we then study how it affects the detection error
rates.

Terminology definition: Assume that there are a total of K C colluders. For each frame
Jj, during the autonomous cheating colluder detection and identification process, assume
that the number of colluders in subgroup SC; and SC; are KC; and K C,, respectively,
with KC; + KC, = KC. A;(SCy) is the set with the indices of the m assistants in SC;
selected to help colluders in SC, calculate {5 i(k, D} 1esc,, and A ;(SC») contains the
indices of the m assistants selected to help colluders in SC; calculate {5 ik, DY tesc, -

Let C; denote the set with the indices of the cheating colluders who collaborate
with each other to avoid being detected by their fellow colluders, and K Cy = |Cq] is
its size.” Among the K C, cheating colluders, K C;(SC;) = |C; N SC;| of them are in

T Note that SCy contains all cheating colluders who apply precollusion processing to further lower their own
risk of being detected by the fingerprint detector, whereas C includes those who work together during the
cheating colluder identification process to avoid being detected by their fellow colluders. C; < SC;.
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Fig. 13.7 Example to illustrate the terms defined in Section 13.3.2.3

subgroup SCj, and the other K C3(SC,) = |Cs; N SC;| cheating colluders are in SCj.
KCy(SC)+ KCy(SCy) = KC, and 0 < KCy(SCy), KC4(SC,) < KC;. For frame j,
we further define K C,s(SC1) = |Cs N A;(SC1)| as the number of cheating colluders in
SC; who are selected as assistants to help calculate {5 i(k, D}riesc,; and K Cyg(SCr) =
|Cs NA;(SC,)| is the number of cheating colluders in SC, who are selected to help
calculate {Ej(k, D}r.tesc, -

Figure 13.7 gives an example of the previously defined terms. In this example, there are
10 colluders and SC = {1,2,...,10}. SC; = {1, 2, 3,4, 5} and SC, = {6, 7, 8,9, 10}.
SCs; = {1, 2, 8} contains the indices of the cheating colluders and KC; = 3. Among
these three cheating colluders, colluders 1 and 2 are in SC; and colluder 8 is in SCj.
Therefore, KCy(SC1) = 2 and KC(SC,) = 1. In SC}, colluders 2 and 3 are selected
as assistants to help SC, calculate {D;(k, [)} and A;(SCy) = {2, 3}. A;(SC2) = {7,9},
and colluder 7 and 9 are selected to help SC; calculate {D;}. In this example, C, N
A;(SC1) = {2} and KCyi(SC1) = 1. C, NA(SC) = P and K Cyy(SCy) = 0.

Analysis of P.;: In this chapter, we consider the scenario in which KCy <« KC; and
KCy « KC,. For subgroup SC;, among the m selected assistants in A ;(SC>), if more
than half of them are from C; (i.e., KCys(SCy) > [m/2]), even if colluders in SC)
apply a majority vote as in Section 13.3.2.2, the cheating colluders can still change
the values of {5_,-(1{, D}r.1esc, and successfully cause others to make detection errors
when identifying cheating colluders using frame ;. The same holds for subgroup SC5.
Therefore, for each frame in the video sequence, the cheating colluders can change
the detection results if and only if either K C,(SC1) > [m /2] or KCps(SCp) > [m/2].
Define Ggc,(p) é{KCS(Scl) = p} as the event that in subgroup SCj, there are p
cheating colluders from Cj; that is, K C(SC1) = p. We have

P = ip [(Kcas(scl) > (%1) U (KCM(SC'z) > (%1) |Gsc,(p)] P [Gsc,(p)]

KC, min{[57-1,p}
=Y 1- Y PKCL(SC) = pi| Gse,(p)]
p=0 P1=0

min{[%7-1,KCs—p}

x Y P[KCu(SC) = p2| Gse,(p)] | p P [Gsc,(p)].  (13.11)
p2=0
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In(13.11),for0 < p < KC, 0 < p; <min{m, p} and 0 < p, < min{m, KC, — p},

P [KCu(SC) = p1 | Gse,(p)] = (l’:l ) (If,,,,cl_;fy > / (ch 1)’

P KCA(SC) = pr | Goor(p)] = (KCS - p) <1<C2 —(KCy — P))/(KCz)

D2 m— p2 m

KC,\ (KC — KC; KC
and P [Gsc,(p)| = ( » >< KCi—p >/(KC1)' (13.12)

Figure 13.8(a) and (b) plot the simulation results of P, with a total of K C = 50 and
K C = 150 colluders, respectively. In our simulations, we let SC| and SC; be of the same
size and KC; = KC, = KC/2. The results are based on 4000 simulation runs. From
Figure 13.8, selecting multiple assistants in each subgroup significantly reduces P,;. For
example, when 10 percent of the colluders are cheating colluders in C;, choosing m = 3
assistants from each subgroup helps lower P, from 0.2 to 0.05 when compared with the
scenario with m = 1. In addition, P, is larger when there are more cheating colluders
in C,.

Simulation results of Py, and P, : The preceding analysis considers one frame
in the video sequence. This section studies the performance of our algorithm when the
detection results from all frames are considered jointly to identify cheating colluders.

We test on the first 300 frames of sequence “carphone”; our simulation setup is the
same as that in Section 13.2.3.2. Human visual model-based spread spectrum embedding
[58] is used to embed fingerprints into the host signal, and orthogonal fingerprints are
assigned to different users. During precollusion processing, cheating colluders select A
such that the newly generated frames have a PSNR of 40 dB when compared with the
originally received ones. Each cheating colluder processes his or her copy independently.

For each frame in the video sequence, each subgroup selects m = 3 assistants to help
the other subgroup calculate {5 ;(k, 1)}, and they apply a majority vote to identify the
cheating colluders. We assume that if they are selected as assistants to help calculate
{5 ;(k, 1)}, honest colluders tell other colluders correct values of {5{,- (k, 1)}. We further
assume that C; = SCj, and all cheating colluders who apply precollusion processing
collaborate with one another to prevent being detected by other fellow colluders. If
a cheating colluder i in subgroup SC; is selected to help colluders in SC, calculate
{5_,-(/(, D}k.1esc,, we assume that colluder i changes the histogram of {5_,- (k, D}k.iesc,
such that none of the cheating colluders in SC;, can be detected. In addition, colluder i
randomly selects an honest colluder k£ € SC,, and changes the values of {l~)_,- (k, D}r.tesc,
so that Algorithm 13.1 falsely identifies another colluder & as cheating. This is similar
to the situation in Figure 13.6(c). The same holds for cheating colluders in SC;. The
threshold « in (13.10) is set to 0.85.

Based on 4000 simulation runs, Figure 13.9(a) and (b) show the simulation results
with KC = 50 and KC = 150 colluders, respectively. From Figure 13.9, if fewer than
15 percent of the colluders are cheating — that is, KC;/KC < 15% — the autonomous
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Fig. 13.8 The probability that a group of cheating colluders modifies the values of {5 i (k, 1)} and
colluders in SC;, make errors when detecting cheating behavior

cheating colluder identification algorithm can correctly identify all cheating colluders.
When KC;/KC > 15% and when P, is larger than 1 — «, P,,; increases quickly as
the total number of cheating colluders grows.

The false alarm probability (Py,) depends on how cheating colluders change {5_,}.
In our simulations, when the cheating colluders are selected to help calculate {5 it
they randomly choose one honest colluder and accuse him or her of cheating. In all our
4000 simulation runs, as shown in Figure 13.9, our algorithm does not falsely accuse
any honest colluders, even when there are a large number of cheating colluders who
cooperate with one another to manipulate the detection results. This is because the
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Fig. 13.9 Simulation results of Py, and P, on the first 300 frames of sequence “carphone”

majority vote and joint consideration of the detection results from all video frames help
honest colluders easily correct this false alarm detection error. In another scenario, in
which cheating colluders continuously compromise the same colluder in SC;, whenever
possible, the false-alarm rate Py, will be similar to the miss-detection rate P,,q.

Resistance to framing attacks

In addition to actively manipulating the detection results, colluders can also pas-
sively attack the autonomous cheating colluder identification algorithm. The purpose
of this passive attack is not to change the detection results, but to access fingerprinted
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coefficients in others’ copies and frame other colluders. This section analyzes the resis-
tance of the autonomous cheating detection and identification scheme to such framing
attacks. We use the term framing colluders to denote colluders who try to access finger-
printed coefficients in others’ copies and frame other colluders. Framing colluders can
be cheating colluders who process their copies before collusion, and it is also possible
that framing colluders honestly report their received fingerprinted copies but want to
access fingerprinted coefficients in others’ copies.

Group of framing colluders

During the autonomous cheating colluder detection and identification process in
Section 13.3.1.2, every colluder processes and encrypts his or her fingerprinted copy
using two different keys. Any other single colluder has at most one key. Therefore, it
prohibits a single framing colluder from accessing others’ copies, and y; = 0 with one
single framing colluder. However, it is possible that a group of framing colluders works
collaboratively to access others’ fingerprinted copies. For example, in Figure 13.5, col-
luder / knows K%/ and colluder i has key K*. If colluder / and i collaborate, they can
decrypt Enc { f (f(i.k), K*! ) K k*’} and access the fingerprinted coefficients in )N(_(].k).
Let C; denote the set containing the indices of framing colluders working together to
access others’ copies. In this section, we consider the scenario in which there is only a
limited number of framing colluders and the size of C is small.

Nonoverlapping content to each assistant

To lower y; and minimize the framing colluders’ chance of successfully accessing others’
copies, one possible solution is that for each selected assistant in SC,, every colluder in
SC, transmits only part of his or her fingerprinted frame, instead of the entire one. Thus,
if only one of the framing colluders in C is selected to help calculate the MSE between
different copies, they can decrypt only part of the fingerprinted copies, and decrypting
the entire fingerprinted frames requires that multiple framing colluders are selected as
assistants.

Assume that the jth fingerprinted frame from colluder i is

X = XV, xP@), ..., X0 (13.13)

As in Section 13.3.2, for each frame j, the colluders first divide themselves into two
nonoverlapping subgroups SC; and SC,. Then, m colluders in SC, are selected as
assistants, and A;(SCy) = {i2,1,...,i2,m} C SC; is the set containing their indices.
Colluders in SC;

* First randomly shuffle the vector [1, 2, ..., N,], and let
al =[al(1),al(2),...,al(N;)] (13.14)

be the returned shuffled vector. al(/) € {1, 2, ..., N;}for/ =1,..., N;,andal(l,) #
al(lz) lfll 7& lz.
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Fig. 13.10 Examples of {b1(n)} for each i, € Ass;(SCy),n=1,...,m

¢ Foreachi;, € A;(SC»), let

n—1

-1
bl(n) 2 {al (mod(/, N)) : Nij+1<I< "—N,» —i—L}, (13.15)
m

m

where 1 < L < N;. Figure 13.10 shows examples of {b1(#n)} for each i, , € A;(SC3)
with m = 3. For i3 ,, i, € A;(SC;) where p # g, bl(p) and b1(g) are of the same
length L.

* Foreachiy, € A;(SC»), every colluder k € SC; selects

xh & {)?j.")(l) e bl(n)} , (13.16)
processes and encrypts )Niﬁk,)q in the same way as in Section 13.3.2.2, and then transmits

it to assistant i .

Note that L = N;/m corresponds to a random partitioning. Colluders in SC, repeat
the same process: generate a shuffled vector a2, select b2(n) for each assistant i; , €
A;(SC), and transmit the encrypted version of )N(ik: S22 {)N(ﬁ-k)(l) il e b2(n)} to iy .
Finally, colluders follow the same procedure as in Section 13.3.2.2 to detect and identify
cheating colluders.
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O Acolluder

(]]D A framing colluder in C;

% Acolluder who is selected to
help the other subgroup
colluders calculate {D(k,/)}

Fig. 13.11 An example to illustrate the terms defined in Section 13.3.3.3

Performance analysis

In this section, we first calculate y; defined in (13.4) for the autonomous cheating colluder
detection and identification algorithm. We then quantify its robustness against framing
attacks and evaluate the maximum number of framing colluders that the autonomous
cheating colluder detection and identification algorithm can withstand.

Terminology definition: Assume that there are K Cy and K C, colluders in subgroups
SC; and SC», respectively. KCr = |Cy| is the number of framing colluders. Among
the K C s framing colluders, K C¢(SCy) = |C, N SC,| of them are in subgroup SC; and
the other KC ;(SC,) = |Cr N SC;| are in SC,. KCp(SCy) + KC7(SCy) = KC and
0 < KC/(SCy), KCy(SCy) < KCy. We further define K C,¢(SC1) = ICrNA;(SC)
as the number of framing colluders that are selected to help colluders in SC; calculate
{ﬁj(k, D}kiesc,,and KC,r(SCy) 2 |Cr N A;(SC,)] is the number of framing colluders
that are selected to help colluders in SC; calculate {5 ik, DYk.resc, -

Figure 13.11 gives an example of the above defined terms. In this example, there are
ten colluders and SC = {1,2,...,10}. SC; ={1,2,3,4,5}and SC, = {6,7, 8,9, 10}.
C/ = {3, 6,10} includes all the framing colluders and K C; = 3. Among these three
framing colluders, colluder 3 is in SC and colluders 6 and 10 are in SC;. KC (SCy) = 1
and KC7(SCy) =2. In SC;, colluders 2 and 4 are selected to help SC, calcu-
late {D;(k,l)} and A;(SCy) = {2,4}. A;(SC;) = {6, 8}, and colluders 6 and 8 are
selected as assistants. Cr NA;(SC;) =0 and KCyr(SC1) =0. Cy N A;(SC,) = {6}
and KC,r(SCy) = 1.

Analysis of y;: In this section, we consider the scenario in which KC, « KC; and
KC; « KC,. We consider two scenarios: L = N;, in which every colluder in SC,
transmits his or her entire fingerprinted frame to all the selected assistants in A ;(SC3),
and L < N;, in which every colluder in SC; gives only part of his or her copy to each
assistant in A;(SC>).

(1) L = Nj: In this scenario, for each frame j in the video sequence, an assistant in
A;(SC)) receives the entire fingerprinted frame from each colluder in SC;. If both SC;
and SC; contain framing colludersin C (i.e., KC s(SC;) > 0and K Cy(SC;) > 0),and
if at least one framing colluder is selected to help calculate {l~) i(k, D)} (e, Kyr(SCp) > 0
or KC,r(SCy) > 0), then the framing colluders are able to obtain both keys and access
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others’ fingerprinted coefficients. They can generate a new frame of high quality that
does not contain any information on their own fingerprints. Recall that Indi-k") is the set

including all the indices of the fingerprinted coefficients in X?) that «® could access.
Ind_(].k) = Usesc.izt Ind_(].k’i) ,and Ind&cf ) = Ukec, Ind_(/.k) . Therefore,

Ny if (0 < KCA(SCy). KCA(SCy) < K )
lInd|"| = N{KC(SC) = 1VU{KCup(SC) = 1)), (13.17)

0 otherwise.

For0 < p < KCyp, let Gf(p)é {KC/(SCy) = p} denote the event that p of the fram-
ing colluders are in SC;. For 0 < p < KCy, 0 <m; <min{m, p} and 0 <m; <
min{m, KC; — p}, we have

KCyp—1
vi= 3 P(KCy(5C) = 1) (KCur(SC = 1) 1G1(p)] x P [G1(p)]
p=1
KCs—1
= Z {1—=P[KCy(SC1)=0|Gs(p)]-P[KCi(SC2)=0]Gs(p)]}
p=1

x P [Gs(p)]. (13.18)

where

KCy — KC
piscser-meol - (300 () /(550)

P [KCay(SC2) = ma|G /(p)] = (K C2 = (KCy = P>) (K Cr— p) / (Kcz) |

m —mj nmop m

KC,\ (KC—KC KC
and P [G /(p)] =( pf>( XC, —pf>/(1<cl>' (13.19)

(2) L < Nj:Weuse L < N;/m asanexample to analyze the performance of the cheat-
ing colluder detection and identification algorithm. The analysis for N;/m < L < N; is
similar and is thus omitted here. From Figure 13.10(b), if L < N;/m, b1(p)(\bl(q) =
@ for any i p,ir, € A;(SCy) where p # g. Similarly, b2(p)(\b2(¢) =¥ for any
i1,p,i14 € A;(SCy) where p # q.

For each frame j, among all the K, framing colluders in C,, assume that
KCur(SC) =m <m of them are selected to help colluders in SC, calculate
{D;(k, D} 1esc,» and KCor(SCy) = my <m of the framing colluders in C; are
selected to help colluders in SC calculate B_f(k, DYr.iesc,- Let A(my, my) denote the
eventthatKCaf(SCl) = ml,KCaf(SCZ) =m,,0 < Kf(SCl), KCf(SCz) < KCf.By
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Fig. 13.12 y; when L takes different values. There are a total of K C = 150 colluders.
KCy = KC, = KC/2, m = 3. Simulation results are based on 4000 simulation runs

combining all the decrypted fingerprinted coefficients that they have, we can show that

LZ
E [|Ind}Cf>|| A(m1, mz)} — min {mlL - maL = mimar,
J

N_,}. (13.20)

Therefore, we have

KC/ lmlnmp}mmm KCr— p}

D VRD DD DR

m1=0 my=0

X P [KCaf(SCl) =m, KCaf(SCQ) =my, Gf(p)]

KC/ ]mmmp mlanC/ p} L L L 2
min — 4+ my——mmy [ — | ,1
>SS e g s (1) 1]

m1—0 mz—o

|In (Cf)|

x P [KCaf(SCy) = my|G 4(p)]
X P [KCof(SC2) = mo|G s(p)] x P [Gp(p)]. (1321)

where P [K Cor(SCy) = mi|G #(p)], P [KCyr(SC2) = m3|G s(p)| and P [G s(p)] are
the same as in (13.19).

Figure 13.12 shows the simulation results of y; when L takes different values. There
are a total of KC = 150 colluders. KC, = KC; = KC/2 andm = 3. As seen in Figure
13.12, transmitting only part of the fingerprinted frames to each selected assistant can
significantly reduce y; and help improve the robustness against framing attacks. For
example, with KC;/KC = 0.1, y; equals 50 percent when L = N; and is reduced to
15 percentif L = N; /4. In addition, y; has a smaller value when there are fewer framing
colluders in C .
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Fig. 13.13 Maximum number of framing colluders in C that the autonomous cheating colluder
detection and identification process can resist

From Figure 13.12, y; has a smaller value when L decreases and, therefore, a
smaller L is preferred to minimize y; and resist framing attacks. On the other
hand, for each assistant i , € A;(SC3), {X(jlfi,}kescl must be long enough that given

{cAZ}iz'”)(k, l)é | |f()N(%, K5S¢y — f(if{, K512} 1. 1esc, that are received from assistant
i2.n, Algorithm 13.1 can correctly detect and identify cheating colluders in SC;. We
use the second frame in the “carphone” sequence an example, and assume that 10
out 150 colluders are selfish and process their fingerprinted copies before collusion.
They select the parameter A ; to generate new frames with PSNR 45 dB. When L = N,
D;(SCy, SCy) and D ;(SC},, SCp) do not overlap, and Algorithm 1 can accurately iden-
tify all 10 selfish colluders. With L = N;/4 and L = N /8, the overlap ratios ¢ defined
in (13.6) are 14.54 percent and 34.24 percent, respectively, and Algorithm 13.1 starts
to make detection errors. Thus, a larger L should be used to ensure the performance of
Algorithm 13.1. To address this tradeoff, for the example in Figure 13.12, L ~ N;/m
with m ~ 3 is often preferred; thatis, L = N;/3 or L = N; /4.

Resistance to framing attacks: In this section, we quantify the robustness of the
cheating colluder identification algorithms against framing attacks. For any fingerprinted
copy, given the requirement that framing colluders can access no more than 6 percent of
the fingerprinted coefficients (i.e., y < 6), we define KC7** £ argmaxgc, {yj < 9},
which is the maximum number of framing colluders that it can resist.

Figure 13.13 plots the ratio K C'7** /K C versus K C when 6 takes different values. In
Figure 13.13, the two subgroups SC; and SC, are of the same size, K C/2, and there
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are m = 3 assistants selected in each subgroup to help calculate {5 i(k,1)}. L = N, /3.
From Figure 13.13, with hundreds of colluders, if no more than 5 percent of them are
framing colluders, then others can be sure that the framing colluders can access no more
than 10 percent of the fingerprinted coefficients in their copies. If K C does not exceed
10 percent of the total number of colluders, then the framing colluders can access fewer
than 20 percent of the fingerprinted coefficients in others’ copies.

Autonomous cheating colluder detection and identification process

To summarize, in peer-structured colluder social networks, the key steps in the
autonomous selfish colluder detection and identification process are as follows. For
each frame ; in the video sequence:

* Step 1. Grouping: Colluders randomly divide themselves into two subgroups,
SC; and SC,, with SC; U SC, = SC and SC; N SC, =@. m colluders in SCj,
A (SC) = {il,l, R ilﬁm}, are randomly selected to calculate {5j(k, D}Yk.iesc, for
colluders in SC,. Similarly, colluders in SC, randomly select m assistants A ;(SC;) =
{iz1, ..., i2m} to help colluders in SC; calculate {(D;(k, DYisesc, -

* Step 2. Encryption: Assume that K5S¢ is a key that is shared by colluders in SC;. For
each selected assistant i, , € A;(SC3), every colluder k € SC; generates a secret key
K*i2n shared with the assistant irn € A;(SC). Foreach i, € A;(SC,), colluders in
SC, follow the same procedure as in Section 13.3.3.2 to generate b1(n). Then, every
colluder & in SC; selects iikzl = {)?(jk) (1) : I € bl(n)}, processes and encrypts it with
keys K¢ and K% respectively, in the same way as in Section 13.3.1.2. Finally,
colluder £ transmits the encrypted )N(y{,)q to assistant i ,. Colluders in SC, follow the
same procedure, process and encrypt their fingerprinted copies, and transmit them to
the corresponding assistants in A ;(SCy).

* Step 3. Calculation of {D,}: After decrypting the bit streams received from all col-
luders in SCj, each selected assistant i , € A;(SC;) follows the same procedure in
Section 13.3.1.1 to calculate

a7 (kD) = || fFX0, K5 — f(XY, K512 (13.22)

Js J.n?

for all £,/ € SC;, and broadcasts the results to colluders in SC, together with his or
her digital signature. Each selected assistant i; , in A ;(SC) repeats the same process

to help colluders in SC; calculate {c?j-l'” (k, l)}kl o
,le
* Step 4. Cheating colluder detection and identiﬁccition: For every honest colluder
ke 5Cy,given {d}" (k. 1)}
1 given (4 (k. 1) klesc
colluder k follows Step 4 in Section 13.3.1.2 and sets v;k) (n,1) = 1if Algorithm 13.1
outputs / € SC; as a cheating colluder. v}k)(n, I) = 0 otherwise. Then, for every

received from the selected assistanti; , € A;(SC3),
1

.....
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colluder / as a potential cheating colluder, and sets T;k)(l) =1if> ", v;k)(n, D>
[m/21. Y{(1) = 0 otherwise.

Finally, each honest colluder £ € SC;, combines the detection results from all frames

—~(k
in the video sequence and outputs the estimated cheating colluder set SCE) =

®
l: W > o p where « is a predetermined threshold. Then, colluders in SC,
exclude those identified cheating colluders from collusion.

From the analysis in Section 13.3.2.3, the preceding autonomous cheating colluder
detection and identification process can accurately identify cheating colluders without
falsely accusing others when there are a limited number of cheating colluders. From
Section 13.3.3.3, this algorithm also helps resist framing attacks and prevent colluders
from accessing the fingerprinted coefficients in others’ copies when the number of

framing colluders is small.

Chapter summary and bibliographical notes

This chapter analyzes the impact of network structures on misbehavior detection and
identification in colluder social networks. We also evaluate the performance of our
algorithms and analyze their resistance against framing attacks.

We first consider the centralized colluder social networks in which there exists a
ringleader whom all colluders can trust, and we design an algorithm by which the
trusted ringleader helps to detect and identify cheating colluders. The trusted ringleader
calculates the difference between fingerprinted copies from different colluders, and
the colluders analyze the histogram of this difference to detect precollusion pro-
cessing and identify cheating colluders. We show that our cheat-proof scheme can
accurately cheating colluders without falsely accusing others even if D ;(SC;, SCy)
and D ;(SCy, SCy) overlap. The cheating user detection algorithm also protects the
fingerprinted coefficients in all copies and prevents colluders from framing one
another.

We then consider the peer structure in which there is not a trusted ringleader, and we
design an autonomous algorithm by which colluders help each other detect precollusion
processing and identify cheating colluders. In this scenario, all the fingerprinted copies
must be processed and encrypted appropriately during cheating colluder detection to
prevent framing attacks. From our analytical and simulation results, when detecting
cheating behavior, the detection algorithm can accurately identify cheating colluders
even if a small group of cheating colluders collaborate with one another to change
the detection results. We also evaluate its antiframing performance, and quantify the
maximum number of framing colluders that it can resist. Our results show that framing
colluders can access no more than 10 percent of the fingerprinted coefficients in others’
copies, if the number of framing colluders does not exceed 5 percent of the total number
of colluders.
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Interested readers can refer to recent studies on the cheating behavior in different
social network structures. The free-riding behavior in P2P file sharing was studied by
Locher and colleagues and by Bougman et al. [146,147] who analyzed cheating in P2P
gaming. Cheating behavior in visual cryptography for secret sharing was investigated
by Horng and co-workers [148].
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Structuring cooperation for hybrid
peer-to-peer streaming

In the previous chapter, using colluder social networks in multimedia fingerprinting as an
example, we showed that the network structure can affect misbehavior detection and and
the overall system performance. In this chapter, we investigate the impact of network
structure on the optimal cooperation strategies in hybrid P2P streaming networks, in
which some users with very high interconnection bandwidth act jointly as one user to
interact with the rest of the peers.

Although P2P video streaming systems have achieved promising results, they also
introduce a large number of unnecessary traverse links, which consequently leads to sub-
stantial network inefficiency. However, in reality, every peer can have a large number of
geographically neighboring peers with large intragroup upload and download bandwidth,
such as peers in the same lab, building, or campus. If these peers have special collabora-
tion among themselves and work jointly as one user toward the rest of the network, the
unnecessary traverse links can be reduced. In this chapter, we denote those geographi-
cally neighboring peers with large intragroup upload and download bandwidths as group
peers. To reduce the unnecessary traverse links and improve network efficiency, instead
of considering each peer’s strategy independently, we investigate possible cooperation
among group peers and study their optimal collaboration strategy.

Because of the heterogeneous network structures, different group peers might take
different roles during cooperation. In this chapter, we investigate the optimal cooperation
strategies under different compositions of group peers, including the scenarios with or
without central authorities, and examine whether peers can have different amounts of
resources.

The structure of the social network plays a key role during the cooperation among
the group peers. For example, because peers are selfish, they tend to act as free riders to
improve their own utilities. If a central authority is presented, the equilibrium cooperation
strategy can be enforced. Nevertheless, if there is no such an authority, the peers may
take out-of-equilibrium strategies owing to the uncertainty of other peers’ strategies.
Under such a circumstance, a robust Nash equilibrium solution is desired for every
peer. To solve such a problem, we formulate the cooperative streaming problem as an
evolutionary game and derive the evolutionarily stable strategy (ESS) for every peer,
which is the desired stable Nash equilibrium.

Furthermore, the central authority can calculate the optimal cooperation strategy for
every group peer. But in a fully distributed network structure, the cooperative streaming
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Fig. 14.1 Example of group peers and the P2P streaming network

scheme should be distributed. Therefore, we also provide a distributed algorithm for
every peer to achieve the ESS by learning from his or her own past payoff history.

System model and utility function

System model

Figure 14.1 shows an example of the P2P streaming networks with group peers. There is
a set of group peers (three in this example) who want to view a real-time video streaming
simultaneously.” We assume that the upload and download bandwidth among members
in a group is large. The peers in the same group will cooperate with one another and
choose k representative peers, called agents, to download video streams from agents in
other groups. Then, agents will distribute the video streams to the other peers in the
group. To achieve good streaming performance through cooperation, two questions need
to be addressed: given a group of peers, how many agents should be chosen, and which
peers should be chosen as agents.

Utility functions

In a P2P network, a peer not only acts as a client to download video data from other
peers, but also acts as a server to upload video data to other peers. Therefore, although

T How to group peers itself is an interesting problem. However, in this chapter, we assume that peers have
already been grouped and focus mainly on how group peers cooperate with one another to achieve better
streaming performance.
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a peer can benefit from downloading from other peers, he or she also incurs a cost in
uploading data, when the cost can be resources spent to upload data, such as bandwidth,
buffer size, and the like.

Given peers uy, uy, ..., uy in one group, we assume that they cooperate with each
other and choose & agents to download multimedia data from peers outside the group.
Suppose that the download rates of the k agents are ry, 5, . . ., 1, then the total download
rate of the group peers is given by

k
e=>_r. (14.1)
i=1

Because the agents randomly and independently select peers outside the group to
download data, the download rates 7; are random variables. According to [149], the
cumulative distribution function (CDF) of a peer’s download bandwidth can be modelled
as a linear function, which means that the probability density Function (PDF) of a peer’s
download bandwidth can be modeled as a uniform distribution; that is, 7;s are uniformly
distributed.

Obviously, if the total download rate yy is not smaller than the source rate r, then the
group peers can achieve real-time streaming, and all group peers can obtain a certain
gain G. Otherwise, there will be some delay, and in this case we assume that the gain is
zero. Therefore, given the total download rate y; and the source rate r, if peer u; chooses
to be an agent, then the utility function of u; is given by

Uyitky= POy =r)G — C;,Vk € [1, N], (14.2)

where C; is the cost of u; when he or she serves as an agent, and P(y; > r) is the
probability of achieving real-time streaming.

Theorem 14.1. If r|, r;,...,r; are ii.d.uniformly distributed in [r%,rY], then
P(yy > r) is given by

k
Pz = 5 12_03(—1)’ (';) (=1 = sgnG =G - 1F], (143)

where 7 = r’U_’L,‘ . When £ is sufficiently large, P(y; > r) can be approximated as

—r

ik
Por>r)~0 |~ 2 | (14.4)

12

where Q(x) is the Gaussian tail function fx > \% exp”z/ 2dt.

2
Proof. Letr; = :{Tfr LL for an agent /. Since 7, 75, . . ., 7 are i.i.d. uniformly distributed
in [0, 1], the characteristic function of 7; is
Jja —e’")

$(1) = (14.5)

t
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where j is the imaginary unit. Let J; = Z;‘zl 71, and its characteristic function is

. it k
#at) = <J(l;e])> ' (14.6)
Therefore, the probability density function of jy is
i(1 — et k
&m:le“te»]@
: : 1k k-1

=0

Because P(yy > r) = P(Jx > F), according to (14.7), we have
oo
POz = PGz = [ Fu0dy

1

‘ k
~ 2% Z(—l)l (Z) [(k —DF —sgn(? — (7 — z)k}, (14.8)
T =0

which proves (14.3).
When £ is sufficiently large, according to the central limit theorem, the distribution

of J; can be approximated as Gaussian distribution A (%, %). Therefore, we have

F—k

Pkzr)=Pr=7)~ Q kz ; (14.9)

12

which proves (14.4).

Because the upload bandwidth and the download bandwidth in the group are large,
the cost to update data to other peers in the group can be neglected. In such a case, if
peer u; chooses not to be an agent, then there is no cost for u; and the utility function
becomes

Py =r)G, ifke[l,N—1];

Un,i(k) = {0’ — (14.10)

Agent selection within a homogeneous group

In the previous section, we discussed the system model and the peer’s utility function.
To optimize the streaming performance, proper peers should be selected as agents to
download data from the peers outside the group. In this section, we discuss how to select
agents within a homogeneous group when the cost of all peers serving as an agent is
assumed to be the same. We will first discuss the scenario in which there is a central
authority and then investigate the optimal agent selection in a fully distributed peer

group.
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Centralized agent selection

If there is a central controller who can choose which peers should act as agents, then a
straightforward criterion for selecting proper agents is to maximize the social welfare,
which is the sum of all peers’ utilities.

Let C; = C be the cost of a peer serving as an agent in a homogeneous group. Then
the social welfare of an N-peer group with k agents can be calculated by

SW(k) = P(yx > r)GN — kC. (14.11)

Based on (14.11), the agent selection problem to maximize the social welfare can be
formulated as

max SW (k) = P(y = r)GN — kC, (14.12)

where k € {1,2,..., N}.

By solving (14.12), we can find the optimal £* that maximizes the social welfare.
Then, the central controller can choose &* peers from the group as agents to download
data from the peers outside the group based on some mechanism, such as peers taking
turns to serve as agents. However, because peers’ behaviors are highly dynamic, they
may join or leave the P2P network at any time. In such a case, the centralized approach
may not be practical.

Distributed agent selection

To overcome the drawback of the centralized approach, we consider a distributed
approach in which each peer acts as an agent with probability x. Then, according
to (14.2) and (14.10), the group’s social welfare can be computed by

N
Uotat(X)=Y (7) (1= [P(yi >r)GN — ic] (14.13)

i=1

Then the problem of finding an optimal x to maximize the social welfare can be formu-
lated as

N
N i _ N—i . s
m;lx; (i ) X (1 =) [Ps =GN —ic]|
st 0<x <l (14.14)

However, because peers are selfish by nature, they are not as cooperative as the
system designer/controller desires. By solving (14.14), we can find the optimal x* that
maximizes the social welfare, but x* can not maximize each peer’s own utility. Therefore,
the social welfare maximizer x* is not attainable when peers are selfish. Moreover, the
solution to the optimization problem shown in (14.14) is not stable, as any perturbation
will lead to a new solution.
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Evolutionary cooperative streaming game

To provide a robust equilibrium strategy for the selfish peers, we adopt the concept of
ESS [150,151], which is defined as follows:

Definition 14.1. A strategy a* is an ESS if and only if Va # a*, a* satisfies

* Equilibrium condition: U;(a, a*) < U;(a*, a*), and
* stability condition: if U;(a, a*) = U;(a*, a*), Ui(a, a) < U;(a*, a),

where U;(ay, az) is player i’s utility when he or she uses strategy a; and another player
uses strategy ;.

Because all peers are selfish, they will cheat if cheating can improve their payoffs,
which means that all peers are uncertain of other peers’ actions and utilities. In such a
case, to improve their utilities, peers will try different strategies in every play and learn
from the strategic interactions using the methodology of understanding by building.
During this process, the percentage of peers using a certain pure strategy may change.
Such a population evolution can be modeled by replicator dynamics. Specifically, let x,
stand for the probability that a peer uses the pure strategy a € A, where A = {4, N} is
the set of pure strategies, including being an agent (A4) and not being an agent (N). By
replicator dynamics, the evolution dynamics of x, are given by the following differential
equation:

Xq = H[U(aa xfa) - U(xa)]xaa (1415)

where U(a, x_,) is the peers’ average payoff using pure strategy a, x_, is the set of
peers who use pure strategies other than a, U(x, ) is the average payoff of all peers, and
n is a positive scale factor.

From (14.15), we can see that if adopting pure strategy a can lead to a higher payoff
than the average level, the probability of a peer using a will grow and the growth rate
X4/x, is proportional to the difference between the average payoff of using strategy a
(U(a, x_,)) and the average payoff of all peers (U(x,)).

Analysis of the cooperative streaming game

According to (14.2) and (14.10), if a peer chooses to be an agent, his or her average
payoft can be computed by

N-1
- N -1\ ,
Uiy =Y ( , )x’(l _ )Vl [P(yiH > G — c}, (14.16)
i
i=0
where x is the probability of a peer being an agent, and (N;l)xi(l — x)N=1=7 is the

probability that among the remaining N — 1 peers in the group, i of them choose to be
agents.
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Similarly, the average payoff of a peer if he or she chooses not to be an agent is given
by

N-1 N1
Un(x) = Z ( ; >xi(l — )V PGy > 1)G. (14.17)
i=1

According to (14.16) and (14.17), the average payoff of a peer is

Ux) = xUy(x) 4+ (1 — x)Un(x). (14.18)
Substituting (14.18) back to (14.15), we have

x = nx(1 —x)[U(x) — Uy(x)]. (14.19)

At equilibrium x*, no player will deviate from the optimal strategy, which means
%* =0, and we can obtain x* = 0, 1, or the solutions to U,(x) = Uy(x). However,
because x* = 0 is only the necessary condition for x* to be an ESS, we examine the
sufficient conditions for each ESS candidate and draw the following conclusions with
the proofs shown in Theorems 14.2 through 14.4.

* x* = 0isan ESS only when P(y; >r)G — C <0.
* x* = lisan ESS only when P(yy > r)G — P(yn_1 >7r)G > C.
* Let x* be the solution to U,(x) = Uy(x), and x* € (0, 1). Then, x* is an ESS.

Lemma 14.1. Let f(x) = Uy(x) — Uy(x); then f’(x) < 0 for all x € [0, 1].

Proof. From (14.16) and (14.17), we have

N N A
f(x) = Z ( , )x’(l —x)V"w, — C, (14.20)
i=0 !
where w; = [P(yiy1 = 1) — P(yi 2 1)]G.

To prove Lemma 14.1, we first calculate the first-order derivative of f(x) with respect
to x, which is

N—-1

f@=) (Nl._ 1)x”(l — V72— (N = Dy,

i=0

i

i=0

- N-1 i—1 N—2—ir:
+Z< i )xl (I =x)"" [ = (N = DxJw;,  (14.21)

i=ii+1

where ] is the integer satisfies i} < (N — )x andi; + 1 > (N — D)x.
Note that w; stands for the additional gain by introducing one more agent into the
i-agent system, as shown in Figure 14.2; it is a decreasing function of i. That is, w; > wj,
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i

Fig. 14.2 The deceasing property of w;

foralli <i; and w; < w;, forall i > i;. Therefore, from (14.21), we have

iy

fley <y (Nl_ l)x"—lu — )N — (N = Dxw;,

i=0
N—1

+ (N,_ 1)xf—l(l — )V — (N = Dx]wy,,
i=ij+1 !
N—-1

= w;, <N )x”(l — )N —(N — Dx],

i=0
d [ S () e

dx

Therefore, f'(x) < 0 forall x € (0, 1).
Second, we find the first-order derivative of f(x) at x = 0, which is

(0 — tim LO=S©
e—0 &
i 2oizo (D= )Yy —
e—0 &

. (1= S)N_lwo — Wy . (N—=1De(1 - 8)N_2w1
= lim + lim

e—0 & e—0 &

= (N — )(w; —wp) <0,

315

(14.22)

(14.23)

where the last inequality comes from the fact that w; is a decreasing function in terms

of i.
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Similarly, the first-order derivative of f(x) at x = 1 can be computed by

- (1 —
P = tim LD =100
£—0 £
i v = i (DA = ey
e—0 &
wy = (=) wyy (N =D — )N Pewy_,
= lim + lim
e—0 & e—0 &
= (N — 1)(1.1)]\]_1 - wN_z) < 0, (1424)

where the last inequality comes from the fact that w; is a decreasing function of'i.
To summarize, f’(x) < 0 for all x € [0, 1]. This completes the proof of the lemma.

Theorem 14.2. The necessary condition for x* = 0 to be an ESS is P(y; > r)G —
Cc<o.

Proof. According to (14.16)—(14.18), the utility that a peer using mixed strategy x and
the other peers use mixed strategy x* = 0 can be written as

U(x, 0) = Un(0) + (U4(0) — Un(0))x,
where U4(0) = P(y; > r)G — C and Uy(0) = 0.

e If P(y; > r)G — C > 0, that is, U4(0) > Uy(0), every peer will deviate to x = 1 to
obtain U (0) rather than Uy (0).

e If P(y; >7)G — C <0, that is, U4(0) < Uy(0), every peer will stay at x = 0 to
obtain Uy (0) rather than U4(0).

« If P(y > )G — C = 0, that is, U4(0) = Ux(0), then T(x, 0) = 0 ¥x, and f(0) =
U4(0) — Uy(0) = 0. According to Lemma 14.1, we know that f/(x) <0 Vx €
[0, 1], 50 f(x) = U4(x) — Un(x) < 0.Insuchacase, U(0, x) = Uy(x) > U(x,x) =
Uy(x) 4+ (U4(x) — Un(x))x, which means x* = 0 is an ESS according to Definition
14.1.

Therefore, x* = 0 is an ESS only when P(y; > r)G—C < 0.

Theorem 14.3. The necessary condition for x* =1 to be an ESS is P(yy >r)G —
Plyy-1 >r)G > C.

Proof. According to (14.16)—(14.18), the utility that a peer uses mixed strategy x and
the other peers use strategy x* = 1 can be written as

Ulx, 1) = Un(1) + (Ua(1) = Un(1))x,
where Uy(1) = P(yy > r)G — C and Uy(1) = P(yy_1 > r)G.

e If P(yy = 7)G — P(yy_1 >7)G < C, ie., Uy(1) > Uy(1), every peer will deviate
to x = 0 to obtain Uy(1) rather than U 4(1).

e If Pyn =7)G — P(yy—1 =71)G > C, ie., UN(l) < UA(I), every peer will stay at
x = 1 to obtain U,(1) rather than Uy(1).
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* If P(yy >7)G — P(yy_1 >7)G =C, ie. Uy(1) = Uy(1), then U(x, 1) = Uy(1)
Vx, and f(1) = Uy(1) — Uy(1) = 0. According to Lemma 14.1, we know that
f'(x) <0 Vx €[0,1], so f(x) = Uy(x) — Uy(x) > 0. In such a case, U(l,x) =
Un(x) + (Us(x) — Oy(x)1 > U(x, x) = Uy(x) + (U4(x) — Uy(x))x, which means
x* = 1 is an ESS according to Definition 14.1.

Therefore, x* = 1 is an ESS only when P(yy >r)G — P(yy—1 >7r)G > C.
Theorem 14.4. If x* € (0, 1) is a solution to U 4(x) = Uy(x), then x* is an ESS.

Proof. Let U;(x, x*) be the utility of player i when player i uses mixed strategy x and
other users use mixed strategy x*. Then, we have

Ui(x, x*) = xUy(x*) + (1 — x)Up(x*). (14.25)

Because x* is a solution to U4(x) = Uy(x), we have U,(x*) = Uy(x*). Therefore,
(14.25) becomes

Ui(x,x*) = Us(x*) = Uy (x*, x7), (14.26)

which means x* satisfies the equilibrium condition shown in Definition 14.1.
Moreover, according to (14.18), we have

Ui(x, x) = Uy(x) + (Ua(x) — Un(x))x, (14.27)
and
Ui(x*, x) = Uy(x) + (Ug(x) — Oy (x))x*. (14.28)
Therefore, we have
Ui(x*, x) = Ui(x, x) = (Ua(x) — Uy(x))(x* = x). (14.29)

From Lemma 14.1, we know that f(x) = U,(x) — Uy(x) is a monotonically
decreasing function. Because U,(x*) = Uy(x*), U4(x) — Uy(x) > 0 if x < x*, and
Uy(x) — Uy(x) < 0ifx > x*. Therefore, (U, (x) — Uy(x))(x* — x) > 0, Vx # x*; that
is,

Ui(x*, x) > Ui(x, x), Vx # x*, (14.30)

which means x* satisfies the stability condition shown in Definition 14.1.
According to (14.26) and (14.30), we know that x* is an ESS.

Agent selection within a heterogeneous group

In this section, we discuss how to select agents within a heterogeneous group in which
the cost functions of the peers acting as agents are different.

Let x; 4, stand for the probability of peer u; using pure strategy a; € A. By replicator
dynamics, the evolution dynamics of x; ,, are given by the following differential equation:

i = nlUi(ai, x—) = Ui(x) ¥, (14.31)
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Table 14.1 Utility table of a two-player game

A N
A (B, —Ci1, B, — () (B1 —Cy, By)
N (B1, By — () (0,0)

where U;(a;, x_;) is the average payoff of peer u; using pure strategy a;, U;(x;) is the
average payoff of peer u; using mixed strategy x;, and n is a positive scale factor.

Because it is generally very difficult to represent L_/i(a,-, x_;) and (_]i(xi) in a
compact form, in the following, we first analyze a two-player game to gain some
insight. Then, we generalize the observation in the two-player game to the multiplayer
game.

Two-player game

Let x; and x; be the probabilities of #; and u; being an agent, respectively. Let B} =
P(y, = r)G and B, = P(y; > r)G. The payoff matrix of | and u, can then, be written
as in Table 14.1.

Therefore, the average payoff U, (4, x,) can be computed by

Ui(4.x3) = (B, — C1)xa + (B — C)(1 — x2), (14.32)
and the average payoff U, (x;) becomes
Ui(x1) = (B, — Cx1xa + (B — C)xi(1 — x2) 4+ Bi(1 —xp)xp. (14.33)
According to Cressman (14.31), the replicator dynamics equation of #; is given by
X1 =nx1(l —x1)[B — C; — (2B — By)x3]. (14.34)
Similarly, the replicator dynamics equation of u, can be computed by
Yo = nxa(1 —x2)[Br — Co — (2B1 — By)x]. (14.35)

At equilibrium, we know that X; = 0 and x; = 0. According to (14.34) and (14.35),

we can get five equilibria: (0, 0), (0, 1), (1, 0), (1, 1), and the mixed strategy equilibrium

B-C, B—C,
2B —B,’ 2B—B, )°

According to Cressman [152], if an equilibrium of the replicator dynamics equations
is a locally asymptotically stable point in a dynamic system, it is an ESS. There-
fore, by viewing (14.34) and (14.35) as a nonlinear dynamic system and analyzing
the corresponding Jacobian matrix, we can examine whether the five equilibria are
ESSs. By taking partial derivatives of (14.34) and (14.35), the Jacobian matrix can be
written as

oiy 05
B 1 I

Xy 0x
J= [“: f’z] _ {J”le], (14.36)
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where J]] = (1 —ZX])(Bl — C] — (2B] — Bz)Xz), J12 :xl(l —xl)(ZBl — Bz), J21 =
x2(1 = x2)(2B1 — By), and Jp = (1 — 2x2)(B; — C2 — (2B — By)xy).
The asymptotic stability requires that det(J) > 0 and trace(J) < 0[152]. Substituting

the five equilibria, (0, 0), (0, 1), (1,0), (1, 1), and (Zﬁ;l:c;z, 2’5’;;%2), into (14.36), we

conclude that

e IfB, — By — Cy > 0and B, — B; — C; > 0, there is aunique ESS (1, 1), where both
u, and u, converge to be agents.

e If B, — By —C; >0and B, — By — C, < 0, there is a unique ESS (1, 0), where u;
converges to be an agent and u, converges to be a free rider.

e If B, — By —C; <0and B, — B; — C, > 0, there is a unique ESS (0, 1), where u,
converges to be an agent and u| converges to be a free rider.

* Otherwise, there are two ESSs (0, 1) and (1, 0), where the converged strategy profiles
depend on the initial strategy profiles.

From this analysis, we can see that when the gain of being an agent (B, — Bj) is
greater than the cost of being an agent (C; or C3), the peer tends to be an agent. Also,
the peer with a higher cost tends to be a free rider and relies on the other peer with a
lower cost.

Multiplayer game

From the analysis of the two-player game, we can infer that a peer with a higher cost
(C;) tends to take advantage of another peer with a lower cost. This observation can
be extended to a multiplayer game. If there are more than two peers in the game, the
strategy of peers with higher C/s will converge to N with a larger probability. The peers
with smaller Cis tend to be agents, as they suffer relatively larger losses if no one serves
as an agent.

Algorithm 14.1: Distributed learning algorithm for ESS

1. Given the step size 1 and the slot index ¢ = 0, each peer u; initializes x; with x;(0).
2. During slot ¢, forg =1 : M,

* u; tosses a coin with probability x;(#) being head. If the outcome is head, u;
serves as an agent and downloads data from the peers outside the group with
download rate 7;(¢, ¢). On the other hand, if the outcome is tail, u; acts as a free
rider and downloads the data from the agents.

* u; computes his or her utility using (14.39).

* u; computes the indicator function using (14.38).

3. Then u; approximates U;(A4, x_;(¢)) and U;(x;(¢)) using (14.40) and (14.41).
4. Finally, u; updates the probability of being an agent x;(¢) using (14.37).
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Distributed learning algorithm for ESS

From the previous two sections, we can see that the ESS can be found by solving
the replicator dynamics equations (14.19) or (14.31). However, solving the replicator
dynamics equations requires the exchange of private information and strategies adopted
by other peers. In this section, we present a distributed learning algorithm that can
gradually converge to ESS without information exchange.

We first discretize the replicator dynamics equation shown in (14.31) as

xi(t+ 1) = xi(0) + n [Ui(4, x-(1) = Ui (xi(0)] x:(0), (14.37)

where ¢ is the slot index and x;(#) is the probability of u; being an agent during slot 7.
Here, we assume that each slot can be further divided into M subslots and each peer can
choose to be an agent or not at the beginning of each subslot.

From (14.37), we can see that to update x;(f + 1), we need to first compute
U;(A, x_;(t)) and U;(x;(¢)). Let us define an indicator function 7;(¢, k) as

1, ifu; is an agent at subslot ¢ in slot 7,
I, q)={ o elon g 1 (14.38)

where ¢ is the subslot index.
The immediate utility of u; at subslot ¢ in slot # can be computed by

G — C;, ifu;isanagentandr’ >r,

—-C;, ifu; is an agent and r* < r,
. = 14.
Uitt, q) G, if u; is not an agent and 7’ > r, (14.39)
0, if u; is not an agent and ' < r,
where ' is the total download rate of the agents and r is the source rate.
Then, U;(A, x_;(t)) can be approximated using
M
— — [Jl t? [i ts
Oud. 3 (1)) = 202! = D 9). (14.40)
Zq:l Ii (t7 q)
Similarly, U;(x;(¢)) can be approximated as
| M
Uixi() = — Y Ut q). 14.41
(i) = 4 ; t.q) (14.41)

Based on (14.37)—(14.41), u; can gradually learn the ESS. In Algorithm 14.1, we
summarize the detailed procedures of the distributed learning algorithm.

Simulation results

In all simulations, the parameters G, r*, and »V are set to be 1, 50, and 800, respectively.
For convenience, in the rest of this chapter, we denote the centralized approach maximiz-
ing the social welfare shown in (14.12) as MSW-C, the distributed approach maximizing
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Fig. 14.3 The social welfare comparison among Non-Coop, MSW-C, MSW-D, and ESS-D

the social welfare shown in (14.14) as MSW-D, and the ESS-based approach as ESS-D.
We compare the hybrid P2P structure with the traditional P2P noncooperation method,
which is denoted as Non-Coop.

In the first simulation, we show the social welfare (the sum of all peers’ utilities) com-
parison among different approaches, in which we assume that there are 20 homogenous
peers and the cost C is 0.1. As shown in Figure 14.3, MSW-C achieves the best social
welfare performance because its objective function is to maximize the social welfare
with pure strategy. By using the mixed strategy to maximize the social welfare, MSW-D
achieves the second-best social welfare performance. However, as discussed in Section
14.2.2, the solution to MSW-D is not stable. With ESS-D, a stable Nash equilibrium
solution can be obtained at the cost of a slight loss in social welfare. Nevertheless, all
three algorithms perform much better than the Non-Coop method. In Non-Coop, the
social welfare performance decreases linearly in terms of the source rate. With coop-
eration and adaptively selecting the proper number of agents, all three algorithms can
preserve a high social welfare performance even with a large source rate.

In the second simulation, we evaluate the convergence property of the ESS-D. In
Figure 14.4, we show the replicator dynamic of the cooperation streaming game with
homogeneous peers, where C = 0.1 and » = 500. We can see that starting from a high
initial value, all peers gradually reduce their probabilities of being an agent, as being a
free rider more often can bring a higher payoff. However, because too low a probability
of being an agent increases the chance of having no peer be an agent, the probability of
being an agent will finally converge to a certain value that is determined by the number
of peers.

In Figure 14.5, we show the replicator dynamic of the cooperation streaming game
with 20 heterogeneous peers, where » = 500 and the cost C; is randomly chosen from
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[0.1, 0.3]. We further assume that C; is monotonically increasing in i where u| has the
lowest cost and u;o has the highest cost. From Figure 14.5, we can see that the peers
with lower costs (i, 1, and 3 in this simulation) converge to be agents, whereas the
peers with higher costs (u4 to uy¢ in this simulation) converge to be free riders. This
observation coincides with our conclusion in Section 14.3.2, which is that the peers with
lower costs tend to be agents because they suffer relatively higher losses if no one serves
as an agent. Because of space limitations, we show only the behavior dynamics of u;
through u4. All other peers, us through u;(, have similar behavior dynamics to u4, and
they all converge to be free riders.

In the third simulation, we compare the probability of real-time streaming performance
between Non-Coop and ESS-D. The simulation results are shown in Figure 14.6. We
can see that with cooperation, the probability of real-time streaming can be significantly
improved, especially at the high source rate region. We also find that at the high source
rate region, the probability of real-time streaming increases as N increases. To give more
insight into the algorithms, in this chapter we assume that there is no buffering effect.
However, the analysis and conclusion can be extended to the case in which a buffering
effect is considered.

We then show the simulation result of the source rate versus the utility. As shown in
Figure 14.7, without cooperation, if the peer requires a utility around 0.8, the source
rate cannot be larger than 130 kbps. However, with cooperation, the source rate can be
more than 400 kbps even when there are only two peers. Therefore, with cooperation,
the peers can enjoy much higher quality video with the same utility.
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In the last simulation, we consider the case in which the peers in the same group
are viewing multiple channels, with L being the number of channels. We assume that
the source rate is the same for all channels and there are twenty homogenous peers
with the cost C = 0.1. Similar to the view-upload decoupling (VUD) scheme [153],
the uploading and downloading are decoupled in the ESS-D algorithm in this case. We
allow cooperation among all the peers, wherein the agent may download source data
that he or she is not viewing. As shown in Figure 14.8, without cooperation, if the peer
requires a utility around 0.8, the source rate can not be larger than 130 kbps in the
Non-Coop method. However, with the ESS-D algorithm, the source rate can be around
240 kbps even when the peers are viewing eight different channels. This phenomenon
fully demonstrates the efficiency of the method discussed in this chapter.

Chapter summary and bibliographical notes

In this chapter, we study how the hybrid P2P cooperative streaming scheme changes with
different network structures. We analyze the optimal cooperation strategies among selfish
peers who have large intragroup upload and download bandwidths among themselves.
We formulate the problem as an evolutionary game and derive the ESS for every peer.
To combat the difficulties in a fully distributed network structure, a distributed learning
algorithm for each peer to converge to the ESS by learning from his or her own past
payoff history is also studied. From the simulation results, we can see that compared
with the traditional noncooperative P2P schemes, the cooperation in the hybrid P2P
network achieves much better social welfare, higher probability of real-time streaming,
and better video quality (higher source rate). Moreover, with the recent VUD scheme,
the cooperative streaming scheme studied in this chapter also allows the peers who
are viewing different videos to cooperate with one another and mutually improve the
streaming performance.

There has been research on video streaming over the Internet, such as the client-
server service model [154,155], in which the video is streamed directly from a server
to clients. However, with the client—server service model, the upload bandwidth of the
server grows proportionally with the number of clients [156], which makes large-scale
video streaming impractical. How to overcome the drawbacks of P2P networks, such as
the unnecessary traverse links, has already drawn attentions of the research community.
Interested readers can see references [157,158] for the usage of locality-aware P2P
schemes to reduce the unnecessary traverse links within and across ISPs and thus reduce
the download time. Purandare and Guha [ 159] studied an alliance-based peering scheme
to reduce the playback time lag and improve the quality of service. The P4P architecture,
which allows cooperative traffic control between applications and network providers, was
introduced by Xie and Yang [160].
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